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Draft Supplement to STANDARD FOR 1 

Telecommunications and Information Exchange 2 

Between Systems - 3 

LAN/MAN Specific Requirements -  4 

 5 

Part 11: Wireless Medium Access Control (MAC) 6 

and physical layer (PHY) specifications: 7 

 8 

Specification for Enhanced Security 9 

This supplement is based on the current edition of IEEE Std 802.11, 1999 Edition and the IEEE 802.11a 10 
and IEEE 802.11b supplements. 11 

NOTE—The editing instructions contained in this supplement define how to merge the material contained 12 
herein into the existing base standard to form the new comprehensive standard as created by the addition of 13 
IEEE Std 802.11-1999. 14 

The editing instructions are shown in bold italic. Three editing instructions are used: change, delete, and 15 
insert. Change is used to make small corrections in existing text or tables. The editing instruction specifies 16 
the location of the change and describes what is being changed either by using strikethrough (to remove old 17 
material) or underscore (to add new material). Delete removes existing material. Insert adds new material 18 
with-out disturbing the existing material. Insertions may require renumbering. If so, renumbering 19 
instructions are given in the editing instruction. Editorial notes will not be carried over into future editions.  20 

2. Normative references 21 
Add the following text to clause 2: 22 

FIPS PUB 180-1, Secure Hash Standard, April 1995 23 

FIPS PUB 197, Advanced Encryption Standard (AES), 2001 November 26H. Krawczyk, et al, "HMAC: 24 
Keyed-Hashing for Message Authentication", RFC 2104, February 1997. 25 

R. Housley,  “Advance Encryption Standard (AES) Key Wrap Algorithm,” RFC 3394, September 2002 26 

IEEE STD 802.1X, Standards for Local and Metropolitan Area Networks: Port Based Access Control, June 27 
14, 2001 28 

3. Definitions 29 
Add the following text in the appropriate location in clause 3: 30 
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Associated Data: Data that is sent as plaintext but still is to be cryptographically protected in an IEEE 1 
802.11 MSDU. This typically consists of information from the IEEE 802.11 header itself. 2 

Authentication Server: See the IEEE 802.1X specification for a definition of this concept. 3 

Authentication Suite: a set of authentication and key management suite selectors. 4 

Authenticator: See the IEEE 802.1X specification for a definition of this concept. 5 

Authorized: to be explicitly allowed. 6 

Big-Endian: The representation of an integer, with its most significant bit first, least significant bit last, and 7 
bytes ordered from most significant to least significant. 8 

Cipher Suite: a set of one or more algorithms, designed to pro provide data privacy, data authenticity or 9 
integrity, and/or replay protection. 10 

Controlled Port: An IEEE 802.1X concept, referring to an IEEE 802.1X Port. See IEEE 802.1X for this 11 
concept. 12 

Counter-CBC-MAC Mode: a symmetric key block cipher mode providing both privacy using Counter mode 13 
and data origin authenticity using CBC-MAC. 14 

Decapsulate: a verb meaning to recover an unprotected packet from a protected one. 15 

Decapsulation: a noun referring to the plaintext data produced by decapsulating an encapsulation. 16 

EAPOL-Key Encryption Key: Key used to encrypt the Key Material field in an EAPOL-Key Message. 17 

EAPOL-Key Key: Combination of EAPOL-Key Encryption key and EAPOL-Key MIC Key. 18 

EAPOL-Key MIC Key: A key used to integrity check an EAPOL-Key Message. 19 

Encapsulate: a verb meaning to construct a protected packet from an unprotected packet. 20 

Encapsulation: a noun meaning the cryptographic payload constructed from plaintext data. This is 21 
comprised by the ciphertext, as well as any associated cryptographic state required by the receiver of the 22 
data, such as initialization vectors, sequence numbers, message integrity codes, key identifiers, etc. 23 

Group: the entities in a wireless network; an AP and associated STAs, or all the STAs in an IBSS network. 24 

Group Master Key: the key that is used as one of the inputs to the Pseudo-Random Function to derive the 25 
Group Transient Key. 26 

Group Nonce: A nonce used to derive a Group Transient Key. 27 

Group Transient Key: a value that is derived from the Pseudo-Random Function using the Group Nonce, 28 
and is split up into as many as three keys (Temporal Encryption Key, two Temporal MIC Keys) for use by 29 
the rest of the system. 30 

Key Counter: a 256 bit (32 octets) counter that is used in the Pseudo-Random Function as a nonce to derive 31 
Transient Session Keys.  There is a single Key Counter per STA (AP or STA) that is global to that station 32 
across all key hierarchies that it is the Key Owner for. 33 

Key Management Service: A service to distribute and manage cryptographic keys within an Robust Security 34 
Network 35 

Little-Endian: The representation of an integer, with its least significant bit first, most significant bit last, 36 
and bytes ordered from least significant to most significant. 37 
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Message Integrity Code: A cryptographic digest, designed to make it computationally infeasible for an 1 
adversary to alter data. This is usually called a Message Authentication Code, or MAC, in the literature, but 2 
the acronym MAC is already reserved for another meaning in this standard. 3 

Michael: Message Integrity Code for the Temporal Key Integrity Protocol. 4 

Nonce: a value that is never reused with a key. “Never reused within a context” means exactly that, 5 
including over all re-initializations of the system through all time. 6 

Offset Codebook Mode: a symmetric key block cipher mode that provides both privacy and data origin 7 
authenticity through the use of offset. 8 

Pairwise: two entities that is associated with each other; an AP and one associated station, or a pair of 9 
stations in an IBSS network, used to describe the key hierarchies for keys that are shared only between the 10 
two entities in a pairwise. 11 

Pairwise Master Key (PMK): the key that is generated on a per-session basis and is used as one of the 12 
inputs into the PRF to derive the Pairwise Transient Keys (PTK).  For EAP-TLS authentication, the 13 
Pairwise Master Key is the key from the RADIUS MS-MPPE-Recv-Key attribute.  For Pre-Shared Key 14 
authentication, the Pairwise Master Key is the Pre-Shared Key. 15 

Pairwise Transient Key (PTK): a value that is derived from the PRF using the SNonce, and is split up into 16 
as many as five keys (Temporal Encryption Key, two Temporal MIC Keys, EAPOL-Key Encryption Key, 17 
EAPOL-Key MIC Key) for use by the rest of the system. 18 

Pass phrase: A secret text string supposedly known only by a particular user, employed to prove the user’s 19 
identity. 20 

Per-Packet Encryption Key. A unique encryption key constructed for each MPDU, employed by IEEE 21 
802.11 RC4-based protocols. 22 

Per-Packet Sequence Counter: For TKIP, the counter that is used as the nonce in the derivation of the Per-23 
Packet Encryption Key; for AES-based protocols, the Per-Packet IV. 24 

Pre-Shared Key: A static key that is distributed to the units in the system by out-of-band means.  25 

Pseudo-Random Function: a function that hashes various inputs to derive a pseudorandom value.  To add 26 
liveness to the pseudo random value, a nonce should be one of the inputs; in our case the Key Counter 27 
provides nonce. 28 

Robust Security Network: An IEEE 802.11 LAN relying on IEEE 802.1X for its authentication and key 29 
management services and CCMP, WRAP, or TKIP for data protection. 30 

Selector: an item specifying a list constituent in an IEEE 802.11 Management Message Information 31 
Element. 32 

Supplicant: an IEEE 802.1X concept, which in the context of IEEE 802.11 represents a STA seeking to 33 
attach to an IEEE 802 LAN via an IEEE 802.1X Port. See the IEEE 802.1X specification for a complete 34 
definition 35 

Temporal Encryption Key: The portion of a transient key used directly or indirectly to encrypt data in  36 
packets. 37 

Temporal Key: Combination of temporal encryption key and temporal MIC key. 38 

Temporal MIC Key: The portion of a transient key used to insure the integrity of data packets. 39 

Uncontrolled Port: An IEEE 802.1X concept, referring to an IEEE 802.1X Port. See the IEEE 802.1X 40 
specification for a complete definition 41 
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4. Abbreviations and acronyms 1 
Add the following text in the appropriate location in clause 4: 2 

AA Authenticator Address 3 

AES Advanced Encryption Standard 4 

AKMP Authenticated Key Management Protocol 5 

ANonce Authenticator Nonce 6 

AS Authentication Server 7 

CBC Cipher-Block Chaining 8 

CBC-MAC CBC Message Authentication Code.  9 

CCM Counter mode with CBC-MAC 10 

CCMP CCM Protocol 11 

CTR Counter mode 12 

EAP Extensible Authentication Protocol (RFC 2284) 13 

EAPOL EAP over LAN (IEEE 802.1X) 14 

EAP-TLS EAP Transport Layer Security (RFC 2716) 15 

GMK Group Master Key 16 

GNonce Group Nonce 17 

GTK Group Transient Key 18 

IETF Internet Engineering Task Force 19 

MIC Message Integrity Code. Because of the special meaning of MAC within the IEEE 802 20 
architecture, this specification uses MIC in place of the standard acronym MAC, which ordinarily 21 
stands for Message Authentication Code. 22 

NIST National Institute of Standards and Technologies 23 

NTP Network Time Protocol 24 

OCB Offset Codebook Block mode 25 

OUI Organizationally Unique Identifier 26 

PEAP Protected EAP 27 

PN Packet Number 28 

PRNG Pseudo Random Number Generator 29 
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RSN Robust Security Network 1 

RSN IE Robust Security Network Information Element 2 

SNonce Supplicant Nonce 3 

TLS Transport Layer Security (RFC 2246) 4 

TK Temporal Key 5 

TKIP Temporal Key Integrity Protocol 6 

TSC TKIP Sequence Counter 7 

TSN Transition Security Network 8 

TTAK TKIP mixed Transmit Address and Key 9 

WRAP Wireless Robust Authenticated Protocol 10 

5.1.1.4 Interaction with other IEEE 802 layers 11 
Add the following paragraph at the end of clause “5.1.1.4 Interaction with other IEEE 802 12 
layers”: 13 

A Robust Security Network (RSN) depends upon IEEE 802.1X to deliver its authentication and key 14 
management services. All STAs and APs in an RSN contain an IEEE 802.1X entity that handles many of 15 
these services. This document defines how an RSN utilizes IEEE 802.1X to access these services. 16 

A Transition Security Network (TSN) is an RSN that also supports unmodified pre-RSN equipment. A TSN 17 
is defined only to facilitate migration to an RSN. A TSN is insecure, since the pre-RSN equipment can 18 
compromise the larger network. 19 

 20 
Add the following clause after clause “5.1.1.4 Interaction with other IEEE 802 layers” but 21 
before clause “5.2 Components of the IEEE 802.11 architecture”: 22 

5.1.1.5  Interaction with non-802 Protocols 23 

An RSN utilizes non-802 protocols for its authentication and key management services. These protocols are 24 
defined by other standards organizations, such as the IETF. 25 

 26 
Add the following clause before clause “5.2.3 Area concepts” and after clause “5.2.2.1 27 
Extended service set (ESS): The large coverage network”, renumbering the Figures as 28 
appropriate: 29 

5.2.2.2  The Robust Security Network 30 

A Robust Security Network provides a number of security features to the IEEE 802.11 architecture. These 31 
features notably include: 32 

§ enhanced authentication mechanisms for both APs and STAs; 33 
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§ key management algorithms; 1 

§ dynamic cryptographic keys; and 2 

§ enhanced data encapsulation mechanism, called CCMP and, optionally, TKIP and WRAP. 3 

An RSN makes extensive use of IEEE 802.1X protocols with IEEE 802.11 to provide the authentication 4 
and key management. This allows IEEE 802.11 to take advantage of work already done in other standards 5 
groups. 6 

An RSN introduces several components into the IEEE 802.11architecture. These components are only 7 
present in RSN systems. 8 

The first new component is an IEEE 802.1X Port. IEEE 802.1X Ports are present on all STAs in an RSN. 9 
They reside above IEEE 802.11 fragmentation and reassembly layer, and all data traffic that flows through 10 
the RSN MAC also passes through the IEEE 802.1X Port. The IEEE 802.1X specification describes the 11 
internal structure of the IEEE 802.1X Port. 12 

A second component is the Authentication Server (AS). The AS is an entity that resides in the DS that 13 
participates in the authentication of all STAs (including APs) in the ESS. It may authenticate the elements 14 
of the RSN itself—i.e., the STAs and APs—or it may provide material that the RSN elements can use to 15 
authenticate each other. The AS communicates with the AA on each STA, enabling the STA to be 16 
authenticated to the ESS and vice versa. Mutual authentication of both the ESS and the STA is an important 17 
goal of the RSN.  It is important to note that the AS is a logical entity only; in real implementations it may 18 
be integrated into the same physical device as an AP, in order to accommodate low end markets such as the 19 
home and SoHo. 20 

 21 

 22 

5.4.2.2 Association 23 
Add the following paragraph after the second paragraph of clause “5.4.2.2 Association”: 24 

Within an RSN this situation is slightly different. In an RSN IEEE 802.1X determines when to allow 25 
general data traffic across an IEEE 802.11 link. A single IEEE 802.1X Port maps to one association, and 26 
each association maps to an IEEE 802.1X Port. After association, the IEEE 802.11 implementation allows 27 
any and all data traffic to pass. The IEEE 802.1X Port, however, blocks general data traffic from passing 28 
between the STA and the AP until after an IEEE 802.1X authentication procedure completes. Once IEEE 29 
802.1X authentication completes, IEEE 802.1X unblocks to allow data traffic. 30 

5.4.2.3 Reassociation 31 
Add the following paragraphs to the end of clause “5.4.2.3 Reassociation”: 32 

As in the case of Association, an AP in an RSN maps a Reassociation to an IEEE 802.1X Port. Although 33 
the 802.1X Ports on the STA and AP allows a IEEE 802.1X protocol to traverse the link, they block other 34 
data traffic over the link until the IEEE 802.1X signals it has completed successfully. 35 

5.4.2.4 Disassociation 36 
Add the following paragraphs to the end of clause “5.4.2.4 Disassociation”: 37 
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Informative Note: Disassociation can terminate an in-progress IEEE 802.1X authentication attempt, as 1 
disassociation makes the AP unreachable to the STA and vice versa. In particular, the IEEE 802.1X protocol 2 
between the STA and the AS will not necessarily complete. 3 

5.4.3 Access and confidentiality control services 4 
Change the sentence of the first paragraph of clause “5.4.3 Access and confidentiality control 5 
services” from: 6 

Two services are required for IEEE 802.11 to provide functionality equivalent to that which is inherent to 7 
wired LANS. 8 

to: 9 

Change the second paragraph of clause “5.4.3 Access and confidentiality control services” 10 
from: 11 

Two services are provided to bring the IEEE 802.11 functionality in line with wired LAN assumptions: 12 
authentication and privacy. Authentication is used instead of the wired media physical connection. Privacy 13 
is used to provide the confidential aspects of closed wired media. 14 

to: 15 

In a pre-RSN WLAN, two services are provided to bring the IEEE 802.11 functionality in line with wired 16 
LAN assumptions: authentication and privacy. Authentication is used instead of the wired media physical 17 
connection. Privacy is used to provide the confidential aspects of closed wired media. 18 

An RSN does not directly provide either service. Instead, an RSN uses IEEE 802.1X to provide access 19 
control and key distribution, and confidentiality is provided as a side effect of key distribution. 20 

5.4.3.1 Authentication 21 
Change the first sentence of the fourth paragraph of clause “5.4.3.1 Authentication” from: 22 

IEEE 802.11 provides link-level authentication between IEEE 802.11 STAs. 23 

to: 24 

IEEE 802.11 supports link-level authentication between IEEE 802.11 STAs. 25 
Add the following paragraphs between the sixth and seventh paragraphs of clause “5.4.3.1 26 
Authentication”: 27 

An RSN-capable IEEE 802.11 network also supports authentication based on IEEE 802.1X. IEEE 802.1X 28 
authentication utilizes protocols above the MAC to authenticate STAs and the ESS with one another. IEEE 29 
802.1X allows a number of authentication algorithms to be utilized. The standard does not specify a 30 
mandatory-to-implement IEEE 802.1X method. In a pure RSN—that is, one deploying only RSN security 31 
mechanisms—only Open System Authentication operates at the MAC sub layer itself. An RSN relies on the 32 
IEEE 802.1X framework, both to control MSDU flows and to carry the higher layer authentication 33 
protocols. In an RSN, the respective IEEE 802.1X Ports of both Access Points and STAs discard MSDUs 34 
before the peer is known to have been authenticated. In this associated but unauthenticated state, the IEEE 35 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

--`,`,,,,``,,``,`,````,,,,,`,`,-`-`,,`,,`,`,,`---



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  8

802.1X Ports permit only the selected IEEE 802.1X authentication protocol to flow across the IEEE 802.11 1 
association. 2 

Since a STA may encounter multiple ESSes, it is necessary to provide a way for a STA to identify the 3 
security domain of each, and to determine the authentication mechanisms each supports. If the ESS is an 4 
RSN, a STA can determine the authentication protocols in use though Beacons and Probe Responses. 5 
Furthermore, the RSN design provides a means by which a STA can indicate the authentication protocol it 6 
intends to use with the ESS. It should be noted that the choice of an acceptable authentication protocol is an 7 
issue for both APs and the STAs, since the goal of IEEE 802.1X Authentication is mutual authentication 8 
between the ESS and the STA, not just authentication of the STA to an AP. Upon encountering an ESS, a 9 
STA determines if the authentication mechanisms—Open System, Shared Key, or IEEE 802.1X—10 
supported by the AP suffice, given its own security requirements. A STA might choose not to associate with 11 
a particular ESS/AP for many reasons, among them being that the supported authentication mechanisms 12 
cannot achieve mutual authentication, or the ESS may constitute an un-trusted security domain.  13 

5.4.3.2 Deauthentication 14 
Change the text of clause “5.4.3.2 Deauthentication” to: 15 

The Deauthentication service is invoked whenever an existing Open System or Shared Key Authentication 16 
is to be terminated. Deauthentication is an SS. 17 

In an ESS RSN, Open System Authentication is required for MAC layer authentication.  In this 18 
environment, Deauthentication results in any association for the deauthenticated station to be terminated, 19 
and also results in the 802.1X controlled port for that station being disabled. The Deauthentication 20 
notification is provided to 802.1X via the MAC sub layer.  21 

5.4.3.3 Privacy 22 
Add the following paragraph between the fourth and fifth paragraphs of “5.4.3.3 Privacy”: 23 

IEEE 802.11 provides four cryptographic algorithms to protect data traffic. Two are based on the RC4 24 
algorithm defined by RSA, and two are based on the Advanced Encryption Standard (AES). This standard 25 
refers to these as WEP, as TKIP, WRAP, and CCMP. A means is provided for stations to select the 26 
algorithm to be used for a given association. 27 
 28 

Add the following clauses after clause “5.4.3.3 Privacy” but before clause “5.5 Relationship 29 
among services”: 30 

5.4.3.4  Key distribution 31 

The enhanced privacy, data authentication, and replay protection mechanisms require fresh cryptographic 32 
keys. These keys need to be created, distributed, and “aged.” IEEE 802.11 supports two key distribution 33 
mechanisms. The first is manual key distribution. The second is automatic key distribution, and is available 34 
only in an RSN that uses a IEEE 802.1X to provide key distribution services. 35 

5.4.3.5  Data Origin Authentication 36 

The data origin authentication mechanism defines a means by which a station that receives a unicast data 37 
frame from another station can ensure that the MSDU actually originated from the station whose MAC 38 
address is specified in the source address field of the packet. This feature is necessary since an unauthorized 39 
station may transmit packets with a source address that belongs to another station. This mechanism is 40 
available only to stations using WRAP and TKIP. 41 
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Data origin authenticity is only applicable to unicast traffic. 1 

Note: All known algorithms to provide data origin authentication of multicast/broadcast rely on public key 2 
cryptography. Because of their computational cost, these methods are inappropriate for bulk data transfers. 3 

5.4.3.6  Replay Detection 4 

The replay detection mechanism defines a means by which a station that receives a unicast data packet from 5 
another station can ensure that the packet is not an unauthorized retransmission of a previously sent packet. 6 
This mechanism is available only to stations using CCMP, WRAP and TKIP. 7 
 8 

5.6 Differences between ESS and IBSS LANs 9 
Add the following paragraphs at the end of Clause “5.6 Differences between ESS and IBSS 10 
LANs”: 11 

In an IBSS each STA must define and implement its own security model, and each STA must trust the other 12 
STAs to implement and enforce a security model compatible with its own. In an ESS the AP enforces a 13 
uniform security model. 14 

In an ESS the STA initiates all associations. In an IBSS a STA must be prepared for other STAs to initiate 15 
communications. Thus, a STA in an IBSS can negotiate the security algorithms it desires to use when it 16 
accepts an association initiated by another station, while in an ESS the AP always chooses the security suite 17 
being used. 18 

In an RSN ESS, the AP offloads the authentication decision to an authentication server, while in an IBSS 19 
each STA must make its own authentication decision regarding each peer. There is no architectural 20 
difference between the two, as in the IBSS case, every STA implements its own Authentication Server. 21 

5.7.6 Authentication 22 
Change the first paragraph in Clause “5.7.6 Authentication” from: 23 

For a STA to authenticate with another STA, the authentication service causes one or more authentication 24 
management frames to be exchanged. The exact sequence of frames and their content is dependent on the 25 
authentication scheme invoked. For all authentication schemes, the authentication algorithm is identified 26 
within the management frame body. 27 

to: 28 

For a STA to authenticate with another STA using either Open System or Shared Key authentication, the 29 
authentication service causes one or more authentication management frames to be exchanged. The exact 30 
sequence of frames and their content is dependent on the authentication scheme invoked. For both of these 31 
authentication schemes, the authentication algorithm is identified within the management frame body. 32 
 33 

5.7.7 Deauthentication 34 
Change the first paragraph in Clause “5.7.7 Deauthentication” from: 35 

For a STA to invalidate an active authentication, the following message is sent: 36 
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to: 1 

For a STA to invalidate an active authentication that was established using Open System or Shared Key  2 
authentication, the following message is sent: 3 
 4 

 5 

Add the following clauses after Clause “5.8 Reference model”, renumbering the Figures as 6 
appropriate: 7 

5.9  IEEE 802.11 and IEEE 802.1X 8 

An RSN relies on an IEEE 802.1X entity above IEEE 802.11 to provide authentication and key 9 
management services. With this model, decisions as to which packets are permitted onto the DS are made 10 
by the IEEE 802.1X entity in addition to the IEEE 802.11 MAC entity.  11 

Given the key role of IEEE 802.1X, a brief summary of IEEE 802.1X and its use with IEEE 802.11 is 12 
presented here. 13 

5.9.1  IEEE 802.1X (Informative) 14 

Devices that attach to a LAN, referred to as Systems, have one or more points of attachment to the LAN, 15 
referred to as Ports. 16 

The Ports of a System provide the means whereby the System can access services offered by other Systems 17 
reachable via the LAN, and also provide the means whereby it can export services to other Systems 18 
reachable via the LAN. Port based network access control allows the operation of a System’s Port(s) to be 19 
controlled in order to ensure that access to its services is only permitted by Systems that are authorized to 20 
do so. 21 

For the purposes of describing the operation of Port based access control, a Port of a System is able to 22 
adopt one of two distinct roles within an access control interaction: 23 

a) Authenticator. The Port configured to enforce authentication and authorization before allowing 24 
access to services that are accessible via that Port adopts the Authenticator role; 25 

b) Supplicant. The Port configured to access the services offered by the Authenticator’s system 26 
adopts the Supplicant role. 27 

A further System role is described: 28 

c) Authentication Server. The Authentication Server performs the authentication function necessary 29 
to check the credentials of the Supplicant on behalf of the Authenticator, and indicates whether or 30 
not the Supplicant is authorized to access the Authenticator’s services. 31 

As can be seen from these descriptions, all three roles are necessary in order to complete an authentication 32 
exchange. A given System can be capable of adopting one or more of these roles; for example, an 33 
Authenticator and an Authentication Server can be co-located within the same System, allowing that System 34 
to perform the authentication function without the need for communication with an external server. 35 
Similarly, a Port can adopt the Supplicant role in some authentication exchanges, and the Authenticator role 36 
in others. An example of the latter might occur when a STA acts in the role of a Supplicant in a BSS, but as 37 
either the Supplicant or the Authenticator in an IBSS. 38 
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A Port Access Entity (PAE) operates the Algorithms and Protocols associated with the authentication 1 
mechanisms for a given Port of the System. 2 

In the Supplicant role, the PAE is responsible for responding to requests from an Authenticator for 3 
information that will establish its credentials. The PAE that performs the Supplicant role in an 4 
authentication exchange is known as the Supplicant PAE. 5 

In the Authenticator role, the PAE is responsible for communication with the Supplicant, and for submitting 6 
the information received from the Supplicant to a suitable Authentication Server in order for the credentials 7 
to be checked, and for the consequent authorization state to be determined. The PAE that performs the 8 
Authenticator role in an authentication exchange is known as the Authenticator PAE. 9 

The Authenticator PAE controls the authorized/unauthorized state of its controlled Port depending upon the 10 
outcome of the authentication process. 11 

Figure 1 illustrates that the operation of Port based access control has the effect of creating two distinct 12 
points of access to the Authenticator System’s point of attachment to the LAN. One point of access allows 13 
the uncontrolled exchange of PDUs between the System and other Systems on the LAN, regardless of the 14 
authorization state (the uncontrolled Port); the other point of access allows the exchange of PDUs only if 15 
the current state of the Port is Authorized (the controlled Port). The uncontrolled and controlled Ports are 16 
considered to be part of the same point of attachment to the LAN; any frame received on the physical Port is 17 
made available at both the controlled and uncontrolled port, subject to the authorization state associated 18 
with the controlled Port. 19 

The point of attachment to the LAN can be provided by any physical or logical Port that can provide a one-20 
to-one connection to a Supplicant System. For example, the point of attachment could be provided by a 21 
single LAN MAC in a switched LAN infrastructure. In LAN environments where the MAC method allows 22 
the possibility of a one-to-many relationship between an Authenticator and a Supplicant (for example, in 23 
shared media environments), the creation of a distinct association between a single Supplicant and a single 24 
Authenticator is a necessary pre-condition in order for the access control mechanisms described in this 25 
standard to function. An example of such an association would be an IEEE 802.11 association between a 26 
station and an access point. 27 

 28 
 

LAN 

Authenticator System 1 

Controlled Port Uncontrolled Port 

Port unauthorized 

LAN 

Authenticator System 2 

Controlled Port Uncontrolled Port 

Port authorized 

 29 
 30 

Figure 13 31 

Figure 1 – Uncontrolled and controlled Ports 32 
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5.9.2  IEEE 802.11 usage of IEEE 802.1X 1 

IEEE 802.11 depends upon IEEE 802.1X to control the flow of MSDUs between the DS and unauthorized 2 
stations by use of the controlled/uncontrolled port model outlined above. EAP authentication packets 3 
(contained in IEEE 802.11 MAC data frames) are passed via the IEEE 802.1X authenticator. Non-4 
authentication packets are passed (or blocked) via the controlled port. Each association between a pair of 5 
stations creates a unique IEEE 802.1X “port,” and authentication takes place relative to that port alone. 6 

IEEE 802.11 depends upon IEEE 802.1X to change its cryptographic keys. IEEE 802.1X may choose to 7 
change the keys for a variety of reasons. Some of the reasons include elapsed time or when a certain number 8 
of packets have been transmitted or received.  9 

5.9.3  Model description 10 

The following authentication and key management operations are carried out when an IEEE 802.1X 11 
Authentication Server is used: 12 

1. The Authenticator and Authentication Server authenticate each other and create a secure channel 13 
between them (the possibilities include RADIUS, IPsec, TLS). The security of the channel 14 
between the Authenticator and the Authentication Server is outside the scope of this specification. 15 

2. The Supplicant and Authentication Server authenticate each other (e.g., possibilities include EAP-16 
TLS and PEAP) and must generate a Master Key. The authentication must be carried over the 17 
Authenticator/Authentication Server secure channel. In addition, there must be crypto-separation 18 
over the Authenticator/Authentication Server secure channel for each Supplicant. 19 

3. A Pairwise Master Key (PMK) is generated for use between the Supplicant and Authenticator. The 20 
PMK is generated from the EAP master key that is obtained from the Supplicant/Authentication 21 
Server authentication. . 22 

4. A 4-way handshake utilizing EAPOL-Key messages occurs between the Supplicant and 23 
Authenticator to 24 

a. Confirm the existence of the PMK;  25 

b. Confirm that the PMK is current; 26 

c. Derive the Pairwise Transient Key from the PMK; 27 

d. Install the encryption and integrity keys into IEEE 802.11; 28 

e. Confirm the installation of the keys. 29 

5. The Group Transient Key is sent from the Authenticator to the Supplicant to allow the Supplicants 30 
to receive, and in an IBSS, transmit broadcast messages, and optionally to transmit and receive 31 
unicast packets. EAPOL-Key messages are used to carry out this exchange. 32 

When a Pre-shared Key is used, 33 

1. A Pairwise master key (PMK) is generated for use between the Supplicant and Authenticator. The 34 
PMK is the Pre-Shared Key in this case. 35 

2. The 4-way handshake using EAPOL-Key messages is used just as in the Authentication Server 36 
case. 37 
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3. The Group Transient Key is sent from the Authenticator to the Supplicant just as in the 1 
Authentication Server case. 2 

There are two implementations of this architecture: 3 

1. For an ESS, the AP is the Authenticator, and associated STAs are the Supplicants. The 4 
Authentication Server may be a RADIUS Server. 5 

2. For an IBSS, each STA is an Authenticator and Supplicant. Each STA implements an 6 
Authentication Server, or else uses a Global pre-shared key is required.  7 

5.9.3.1 Frame exchange overview 8 

Before IEEE 802.11 can protect packets, the STA must perform  IEEE 802.11 Open System Authentication 9 
and associate to the AP. These steps allow the STA and AP to negotiate security association characteristics, 10 
including the authenticated key management, unicast and multicast cipher suites employed. IEEE 802.11 11 
Open System Authentication and association are used to retain legacy IEEE 802.11 state flow. Figure 2 12 
depicts  how a STA discovers an AP and negotiates a security policy. 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

Figure 2—Establishing the IEEE 802.11 connection and negotiation 29 

Once the STA and AP successfully establish a common security policy, both filter both data traffic, 30 
restricting this to IEEE 802.1X EAP authentication frames. In the next phase the STA to successfully 31 
authenticate with an Authentication Server (AS), as depicted by Figure 3. 32 

AP 
STA 

Probe Request 

Probe Response + RSN IE (AP supports MCast/Ucast: CCMP, 
WRAP, TKIP, WEP and 802.1X EAP Authentication) 

IEEE 802.11 Open Authentication (request) 

IEEE 802.11 Open Authentication (response) 

Association Response (success) 

Association Req + RSN IE (Client requests TKIP and 802.1X 
EAP Authentication) 

 

802.1X controlled port blocked for client AID 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

Figure 3—IEEE 802.1X EAP authentication 20 

In order for the STA to avoid rogue APs and the AP unauthorized STAs, the STA and AP must mutually 21 
authenticate and prove the communication is live and not being replayed. Both the AP and the STA is still 22 
block general IEEE 802.11 data packets during this phase, allowing only IEEE 802.1X EAP packets to 23 
flow, The IEEE 802.1X authentication step achieves mutual authentication with the STA and derives fresh, 24 
never-before-used per-link keys, which are required to protect traffic over the association. The per-link key, 25 
known as a Pairwise Transient Key (PTK), is achieved through a protocol called the 4-way handshake, 26 
depicted in Figure 4. Clause 8.5 describes the 4-way handshake in greater detail.   27 

 28 

 29 

 30 

 31 

STA AP 

802.1X/EAP-Request Identity 

802.1X/EAP-Response Identity  
(EAP type specific) 

 

EAP Access Request/Identity 

EAP type specific mutual authentication 

802.1X controlled port still blocked for client AID 

Derive Pairwise 
Master Key 

(PMK) 

Derive Pairwise 
Master Key 

(PMK) 

EAP Accept  (with PMK via MS-MPPE) 

802.1X/EAP-SUCCESS 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Figure 4—Establishing pairwise keys 17 

Once the STA and AP have authentication and established a fresh pairwise key, the AP can use it to deliver 18 
the key required to protect multicast traffic, the Group Transient Key (GTK). This last phase is achieved 19 
with a two message exchange, called the Group Key Handshake. Upon its success, both STA and AP open 20 
the IEEE 802.1X port and allow communication over a protected channel. The last phase is shown in Figure 21 
5. 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

STA AP 

PMK PMK 

Derive SNonce Derive ANonce 

EAPoL-Key(Reply Required, Unicast, 

EAPoL-Key(Unicast, SNonce, MIC, STA 

EAPoL-Key(Reply Required, Install PTK, Unicast, 
ANonce, MIC, AP RSN IE) 

 

Derive PTK 

Derive PTK 

Install Keys Install Keys 

EAPoL-Key(Unicast, ANonce, MIC) 

802.1X controlled port still blocked for client AID 
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 5 

 6 

 7 

 8 

 9 

 10 

 11 

Figure 5—Group key delivery - final phase 12 

5.9.4 Deployment discussion 13 

The Authenticator/Authentication Server authentication protocol is out of scope, but, to provide security 14 
assurances, the protocol needs the following characteristics: 15 

1. Authenticate the Authenticator and Authentication Server. 16 

2. Provide a secure channel for the Supplicant/Authentication Server authentication and provide 17 
separation of different Supplicant to Authentication Server exchanges. 18 

3. Pass the generated key from the Authentication Server to the Authenticator for use by the 19 
Authenticator to communicate to the Supplicant. 20 

Suitable protocols include RADIUS and Diameter. 21 
Change the phrase “Wired Equivalent Privacy (WEP)” in Clause 7.1.3.1 to “Protected 22 
Frame”. 23 

Change “WEP” in Figure 13 to “Protected Frame”. 24 

Change the title of Clause 7.1.3.1.9 to: 25 

7.1.3.1.9 Protected Frame field 26 
Change the text of Clause 7.1.3.1.9 to: 27 

The Protected Frame field is one bit in length. The Protected Frame field is set to 1 if the Frame Body field 28 
contains information that has been processed by a cryptographic encapsulation algorithm. The Protected 29 
Frame field is only set to 1 within frames of Type Data and frames of Type Management, Subtype 30 
Authentication. The Protected Frame field is set to 0 in all other frames. When the Protected Frame bit is set 31 
to 1, the Frame Body field is protected utilizing the cryptographic algorithm selected during association or 32 
Reassociation and expanded as defined in Clause 8. 33 

STA AP 

GMK 

Derive GNonce & GTK 

Encrypt GTK field 

EAPoL-Key(All Keys Installed, Reply Required, Group Rx, Key 
Index, Group, GNonce, MIC, GTK) 

EAPoL-Key(Group, MIC) 

802.1X controlled port still blocked for client AID 
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Change the text of paragraph from Clause 7.2.2 reading 1 

The frame body consists of the MSDU or a fragment thereof, and a WEP IV and ICV (if and only if the 2 
WEP subfield in the frame control field is set to 1). The frame body is null (0 octets in length) in data 3 
frames of Subtype Null function (no data), CF-Ack (no data), CF-Poll (no data), and CF-Ack+CF-Poll (no 4 
data). 5 
to 6 

The frame body consists of the MSDU or a fragment thereof, and a security header and trailer (if and only if 7 
the Protected Frame subfield in the frame control field is set to 1). The frame body is null (0 octets in 8 
length) in data frames of Subtype Null function (no data), CF-Ack (no data), CF-Poll (no data), and CF-9 
Ack+CF-Poll (no data). 10 

7.2.3.1 Beacon frame format 11 
Add the following rows to the end of Table 4 in Clause “7.2.3.1 Beacon frame format”: 12 

14 RSN Information Element A Beacon may specify a single RSN Information 
Element. 

 13 

7.2.3.4 Association Request frame format 14 
Add the following rows to the end of Table 7 in Clause “7.2.3.4 Associate Request frame 15 
format”: 16 

5 RSN Information Element An association request may specify a single RSN 
Information Element. 

 17 

7.2.3.6 Reassociation Request frame format 18 
Add the following rows to the end of Table 9 in Clause “7.2.3.6 Reassociate Request frame 19 
format”: 20 

6 RSN Information Element A Reassociation request may specify a single RSN 
Information Element. 

 21 

 7.2.3.9 Probe Response frame format 22 
Add the following rows to the end of Table 12 in Clause “7.2.3.9 Probe Response frame 23 
format”: 24 

10 RSN Information Element A Probe response may specify a single RSN 
Information Element. 

7.2.3.10 Authentication frame format 25 
Add the following text after the first sentence of Clause “7.2.3.10 Authentication frame 26 
format” 27 
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Only Open System Authentication frames may be used  with RSN. 1 

7.3.1.4 Capability Information field 2 
Add the following paragraphs to Clause 7.3.1.4: 3 

STAs (including APs) that include the RSN IE in beacons and probe responses shall set the Privacy subfield 4 
to 1 in any frame that includes it. 5 

 6 
Delete the last row and then add the following rows to “Table 18—Reason codes”: 7 

13 Invalid Information Element 

14 MIC failure 

15 4-way handshake timeout 

16 Group key update timeout 

17 Information element in 4-way handshake different from (Re-)associate request/Probe 
response/Beacon 

18 Multicast Cipher is not valid 

19 Unicast Cipher is not valid 

20 AKMP is not valid 

21 Unsupported RSNE version 

22 Invalid RSNE Capabilities 

23 IEEE 802.1X Authentication failed 

24-65535 Reserved 

 8 
Add the following row to “Table 20 – Element IDs”: 9 

RSN Information Element 48 

 10 
Add the following clause after Clause “7.3.2.8 Challenge Text element” but prior to Clause “8 11 
Authentication and privacy”, renumbering Tables and Figures as appropriate: 12 

7.3.2.17  RSN Information Element (RSN IE) 13 

The RSN Information Element (RSN IE) lists authentication and pairwise key cipher suite selectors, a 14 
single group key cipher suite selector, and an RSN capabilities field. All STAs implementing RSN shall 15 
support this element. 16 
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 1 

Element 
ID 

1 octet 

Length 

1 octet 

Version 

2 octets 

Group 
Key 

Cipher 
Suite 

4 
octets 

Pairwise 
Key 

Cipher 
Suite 
Count 

2 octets 

Pairwise 
Key 

Cipher 
Suite 
List 

4⋅m 
octets 

Authenticated 
Key 

Management 
Suite Count 

2 octets 

Authenticated 
Key 

Management 
Suite List 

4⋅n octets 

RSN 
Capabilities 

 

2 octets 

Figure 6—RSN Information Element format 2 

Informative Note. The count fields of the RSN IE were chosen to be two octets each to improve alignment. 3 

All fields use the bit convention from 7.1.1. The RSN IE, if supplied, shall contain up to and including the 4 
Version field. The group key cipher suite field, pairwise cipher suite field, authenticated key management 5 
suite field, and RSN Capabilities field are optional. If the group key suite field is not supplied, then the 6 
pairwise key cipher suite and authenticated key management suite fields shall not be supplied. If the group 7 
key cipher suite field is supplied but not the pairwise key suite field, then the authenticated key management 8 
suite field shall not be supplied. 9 

Element ID shall be 48 decimal (30 hex). 10 

Length gives the number of octets in the information element. 11 

The Version field indicates the version number of the RSN protocol. The range of Version field values a 12 
STA supports shall be contiguous. 13 

RSN Version 1 shall indicate the following: 14 

1. A STA may support IEEE 802.11 Open System Authentication. 15 

2. A STA sets the Privacy bit set in the same way as WEP. 16 

3. A STA supports the RSN IE. An AP supporting RSN shall include the RSN IE in Beacons and 17 
Probe Responses. A STA supporting RSN shall include the RSN IE in the Association and 18 
Reassociation Requests. 19 

4. A STA supports CCMP. 20 

5. A STA supports key updates using EAPOL-Key descriptor from this document. 21 

A suite selector has the following format: 22 

 23 

OUI – 3 Octets 

 

Suite Type – 1 octet 

Figure 7—Suite selector format 24 

The order of the OUI field shall follow the ordering convention for MAC addresses from IEEE 802.11 25 
7.1.1. 26 
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 1 

Table 1 – Authenticated Key Management Suite Selectors 2 

Meaning OUI Value 

Authentication Type Key Management Type 

00:00:00 0 Reserved Reserved 
00:00:00 1 Unspecified authentication over 

IEEE 802.1X– RSN default 
IEEE 802.1X Key Management 
as defined in 8.5 – RSN default 

00:00:00 2 None IEEE 802.1X Key Management 
as defined in 8.5, using pre-
shared key 

00:00:00 3-255 Reserved Reserved 
Vendor Specific Any Vendor Specific Vendor Specific 
Other Any Reserved Reserved 
 3 

The Authenticated Key Management suite selector value 00:00:00:1 “Unspecified authentication over IEEE 4 
802.1X” with “IEEE 802.1X key management as defined in 8.5” shall be the assumed default when the 5 
Authenticated Key Management Suite Selector field is not supplied. 6 

Informative Note. The Selector value 00:00:00:1 specifies only that IEEE 802.1X is used as the 7 
authentication transport, and that IEEE 802.1X selects the authentication mechanism. 8 

The Authenticated Key Management suite selector value 00:00:00:2 “Pre-shared key over IEEE 802.1X” is 9 
used when a pre-shared key is used with IEEE 802.1X. 10 

Informative Note: The inclusion of different Authentication types allows the simplification of the User 11 
Interface. It allows the pre-shared key UI to be enabled/disabled on stations depending on the configuration 12 
of the AP so users are only asked for the information that is required for any particular scenario. 13 

Informative Note: This specification defines no vendor specific Authenticated Key Management Suites. The 14 
category “Vendor Specific” is reserved as a standardized way to introduce suites. 15 

Table 2 – Cipher Suite Selectors 16 

OUI Value Meaning 

00:00:00 0 None 
00:00:00 1 WEP-40 
00:00:00 2 TKIP 
00:00:00 3 WRAP 
00:00:00 4 CCMP – default in an RSN 
00:00:00 5 WEP-104 
00:00:00 6-255 Reserved 
Vendor OUI Other Vendor Specific 
Other Any Reserved 

The cipher suite selector 00:00:00:4 “CCMP” shall be the default cipher suite value. 17 

The cipher suite selector 00:00:00:1 “WEP” is only valid as a cipher suite in a TSN. 18 

Use of CCMP or WRAP as the group key cipher suite with TKIP or WEP as the pairwise key cipher suite 19 
shall not be supported. 20 
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The cipher suite selector 00:00:00:0 “None” is only valid as the unicast cipher suite. An AP may specify the 1 
selector 00:00:00:0 “None” for a pairwise key cipher suite if it does not support any pairwise cipher suites. 2 
An AP shall not specify the selector 00:00:00:0 “None” as the group key cipher suite selector. The group 3 
key cipher suite selector in the Associate Request and the Reassociate Request shall match the value the 4 
STA received in the Probe Response or the Beacon. 5 

Informative Note: The selector 00:00:00:0 “None” informs STAs that the AP is not configured to support 6 
pairwise key cipher suites.  7 

Informative Note: This specification defines no vendor specific Cipher Suites. The category “Vendor 8 
Specific” is reserved as a standardized way to introduce suites. 9 

It does not make sense to use every cipher suite in any context. Table 3 indicates the circumstances under 10 
which each may be used. 11 

Table 3—Cipher Suite Usage 12 

Cipher Suite 
Selector 

Group Key, IBSS Group Key, ESS Pairwise Key 

None No No Yes 

WEP No Yes No 

TKIP Yes Yes Yes 

WRAP/CCMP Yes Yes Yes 

The RSN Capability Information field indicates requested or advertised capabilities. The length of the RSN 13 
Capability Information field is two octets. An AP sets the Pre-authentication Subfield (Bit 0) of the RSN 14 
Capability Information field to signal it supports Pre-Authentication, and it clears the subfield when it does 15 
not support Pre-Authentication.  A STA sets the Pairwise Key Subfield to 1 if the STA supports Pairwise 16 
keys using default keys rather than using key-mapping keys, and clears the subfield otherwise. The 17 
remaining subfields of the RSN Capability Information field are reserved and shall be set to zero on 18 
transmission and ignored on reception. The value of the capability information field shall be taken as 0 if 19 
the field is not available in the RSN information element. The format of the Capability Information field is 20 
as illustrated in Figure 8. 21 

 22 

Figure 8—RSN Capabilities 23 

The TKIP Number of Replay Counters contains the value of dot11TKIPNumberOfReplayCounters. See 24 
Section 8.3.2.2.4. If the field does not exist in the information element then the value of 0 is to be assumed. 25 
The meaning of dot11TKIPNumberOfReplayCounters is: 26 

0 1 replay counters 27 
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1 2 replay counters 1 

2 4 replay counters, 2 

3 16 replay counters 3 

Informative Note. If a security policy does not allow particular cipher or authentication suites, then APs and 4 
STAs should be configured to not advertise or select these suites in the RSN IE 5 

Informative Note: The following represent example information elements: 6 

1. 802.1X authentication, CCMP pairwise and group key cipher suites (WEP and TKIP not allowed). 7 
 30, // information element id, 48 expressed as Hex value 8 
 14,  // length in octets, 20 expressed as Hex value 9 
 01 00, // Version 1 10 
 00 00 00 04, // CCMP as group key cipher suite 11 
 01 00, // pairwise key cipher suite count 12 
 00 00 00 04, // CCMP as pairwise key cipher suite 13 
 01 00, // authentication count 14 
 00 00 00 01 // 802.1X authentication 15 

00 00 // No capabilities 16 

2.  17 
 30, // information element id, 48 expressed as Hex value 18 
 14,  // length in octets, 20 expressed as Hex value 19 
 01 00, // Version 1 20 
 00 00 00 04, // CCMP as group key cipher suite 21 
 01 00, // pairwise key cipher suite count 22 
 00 00 00 04, // CCMP as pairwise key cipher suite 23 
 01 00, // authentication count 24 
 00 00 00 01 // 802.1X authentication 25 
 80 00 // No capabilities 26 

3.  27 
 30, // information element id, 48 expressed as Hex value 28 
 12,  // length in octets, 20 expressed as Hex value 29 
 01 00, // Version 1 30 
 00 00 00 01, // WEP as group key cipher suite 31 
 01 00, // pairwise key cipher suite count 32 
 00 00 00 00, // No pairwise key cipher suite 33 
 01 00, // authentication count 34 
 00 00 00 01 // 802.1X authentication 35 

Replace Clause 8 “Authentication and Privacy” with the following text: 36 

8  Security 37 

8.1 Framework 38 

This standard defines two classes of security algorithms for IEEE 802.11 networks: pre-RSN security 39 
algorithms, and algorithms for a Robust Security Network, called RSN security algorithms. Equipment 40 
implementing Robust Security Network algorithms are called RSN-capable, while earlier IEEE 802.11 41 
equipment are called pre-RSN equipment. It also supports combinations of RSN and pre-RSN equipment in 42 
the same WLAN. Such a network is called a Transition Security Network, or TSN, to emphasize the 43 
transitional nature of such combinations. 44 
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Important Informative Security Warning. Transition means just that. A 1 
TSN cannot provide the assurances of an RSN. Compromise of 2 
communication between pre-RSN and RSN equipment can compromise 3 
communication strictly among RSN equipment. Organizations mixing 4 
RSN and pre-RSN equipment should be encouraged to migrate to 5 
homogeneous RSN networks as rapidly as is feasible. 6 

All security algorithms are optional, but all IEEE 802.11 implementations claiming security shall implement 7 
the mandatory RSN components. 8 

8.1.1 Security components 9 

Pre-RSN security consists of two basic subsystems: 10 

§ WEP privacy, to encapsulate data, and 11 

§ IEEE 802.11 authentication. 12 

8.2.2.1 describes WEP, while 8.2.3.1 describes the IEEE 802.11 authentication procedures. 13 

RSN security consists of two basic subsystems: 14 

§ Data privacy mechanism: 15 

o TKIP, to provide minimally adequate level of data privacy for pre-RSN hardware 16 
conforming to the 1999 issue of this standard; 17 

o WRAP, an optional AES-based protocol, to provide robust data privacy for the long term; 18 
and 19 

o CCMP, another AES-based protocol, to provide robust data privacy. Any implementation 20 
claiming to provide security shall implement CCMP 21 

§ Security association management: 22 

o RSN negotiation procedures, to establish a security context; 23 

o IEEE 802.1X authentication, replacing IEEE 802.11 authentication; 24 

o IEEE 802.1X key management, to provide cryptographic keys; 25 

8.1.2  Identifying pre-RSN equipment 26 

Pre-RSN devices conform to the 1999 issue of this standard. These devices do not include the RSN IE in 27 
their Beacons and Probe Responses, and in Association and Reassociation Requests. Pre-RSN devices 28 
ignore the presence or otherwise of the RSN IE in received messages. 29 

8.1.3  Identifying RSN-capable equipment 30 

An RSN-capable AP shall, and a non-AP STA may, include the RSN IE in all Beacons, Probe Responses, 31 
Association Requests, and Reassociation Requests. When included, this IE advertises the sender as RSN-32 
capable. Including the RSN IE shall be the default for RSN-capable non-AP STAs. 33 
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An RSN-capable STA may identify another RSN-capable STA by noting that the RSN IE is included in any 1 
Beacon, Probe Response, Association Request, or Reassociation Request it receives from the peer. An 2 
RSN-capable STA may identify Pre-RSN equipment by the peer’s failure to include the RSN IE. 3 

Informative Note: There is no requirement for a non-AP STA to always include the RSN IE in all the 4 
association establishment messages. For example, if a STA migrates to an unknown ESS in a new security 5 
domain, it may not be able to communicate because it has not been issued the appropriate credentials. This 6 
forces the association, if accepted, to fall back to use pre-RSN security mechanisms only. The responding 7 
peer STA is not required to accept the association request in this instance, as doing so may violate its own 8 
security policy. Every RSN-capable AP shall include the RSN IE to participate in RSN security. 9 

8.1.4  Mixtures of RSN and pre-RSN equipment 10 

An RSN-capable AP in an ESS or a STA in an IBSS may communicate with both RSN-capable and pre-11 
RSN equipment simultaneously. An RSN-capable STA in an ESS may communicate with either RSN-12 
capable or legacy APs, but shall not do so simultaneously. These rules permit migration from deployments 13 
based on legacy WEP security to RSN-based security. 14 

8.1.5  Operation 15 

RSN supports two models of operation. One model is based on IEEE 802.1X authentication, while the other 16 
depends on a global pre-shared key. 17 

RSN-capable STAs use Beacons and Probe request to identify other RSN-capable peer STAs. When the 18 
peer indicates it is RSN-capable, the STA shall implement the following sequence of procedures in the 19 
IEEE 802.1X authentication model: 20 

1. First it associates and negotiates the security parameters used with the association. 8.4.2 and 8.4.3 21 
describe the RSN negotiation procedures. 22 

2. Next it authenticates, using the agreed upon association mechanism. 8.4.6 and 8.4.7 describe the 23 
IEEE 802.11 use of IEEE 802.1X authentication. 24 

3. Third, it executes a key exchange algorithm, based on the IEEE 802.1X EAPOL Rekey protocol. 25 
Clause 8.5 describes the IEEE 802.11 use of IEEE 802.1X key management, to obtain temporal 26 
keys. 27 

4. Finally, it uses the agreed upon temporal keys and cipher suites to protect the link. 8.3.2, 8.3.3, and 28 
8.3.4 describe the three defined data RSN encapsulation mechanisms. 29 

If the peer fails to indicate it is RSN-capable, the STA may fall back to the following procedures: 30 

1. first uses 1999 IEEE 802.11 (Pre-RSN) authentication; 31 

2. followed by association; 32 

3. optionally followed by use of legacy WEP. 33 

8.2.3.1 describes pre-RSN authentication, while 8.2.2.1 describes WEP. 34 

If the BSS is based on a global pre-shared key, the STA instead executes the following sequence of 35 
procedures: 36 

1. It runs the Clause 8.5 the key exchange, to establish pairwise and group keys and cipher suites. It 37 
uses the global pre-shared key as the pairwise master key for each such exchange 38 
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2. It uses the established keys and cipher suites to protect the link. 1 

8.1.6  RSN assumptions and constraints 2 

RSN assumes: 3 

1. Mutual authentication of the IEEE 802.1X AS and the STA. This assumption is intrinsic to IEEE 4 
802.11 LANs and cannot be removed without compromising security. 5 

2. In particular, the mutual authentication requirement implies an unspecified prior enrollment 6 
process, as the STA must be able to identify the ESS or IBSS as an entity that it regards as 7 
genuinely trustworthy. The non-secured IEEE 802.11 model of promiscuous roaming does not and 8 
cannot provide security in a WLAN. This assumption is intrinsic to IEEE 802.11 and cannot be 9 
removed without compromising security. 10 

Informative Note: This assumption complicates some business models, such as those used by IEEE 802.11 11 
hot spot providers, but this in no way eliminates the assumption. Enrollment can be indirect, e.g., an 12 
organization might use a PKI for authentication, signing the hot spot provider’s certificate with a key STAs 13 
from their organization trust. Such a signing key can only be employed for this one purpose—certifying that 14 
the bearer’s is a party trusted to enforce the signer’s security policy—or security of the WLAN is lost. In 15 
practice service level agreements and auditing will be needed to be able to verify that the provider actually 16 
enforces the security policy delegated in this manner. 17 

3. RSN assumes that either the mutual authentication is strong or is somehow shielded from 18 
unauthorized reception. This assumption is intrinsic to IEEE 802.11 LANs and cannot be removed 19 
without compromising security. 20 

4. Authentication derives a fresh—i.e., never before used—session key. 21 

5. In an ESS all APs lie entirely within the security boundary surrounding the IEEE 802.1X AS. This 22 
is a very strong configuration constraint. In practice this implies that either the IEEE 802.1X server 23 
is embedded in the AP, or else the AP is physically secure (e.g., physical access to the AP is 24 
controlled; access—both physical and by network—to the DS is controlled; the AP shielded from 25 
all unauthorized radio transmissions, etc.), and the communication channel between the AS and the 26 
AP lies entirely within the security boundary as well. 27 

6. In an ESS that supports roaming, all channels between any pair of APs through the DS are within 28 
the same security boundary. This again is a very strong configuration constraint. It implies that the 29 
DS is wired, physically secured, and secured from all outside attacks, including those that might be 30 
launched via IEEE 802.1X authentication itself. Thus, RSN cannot support one of the most 31 
common home configurations, where the IEEE 802.11 LAN is itself the DS. 32 

7. Key generation of a 256-bit key at the Supplicant and Authentication Server for use by the 33 
Supplicant and Authenticator. 34 

8.2 Pre-RSN security methods 35 

Except for Open System Authentication, all pre-RSN security mechanisms have been deprecated, as they 36 
fail to meet their security goals. They can be easily compromised. New implementations should support pre-37 
RSN methods only to aid migration to RSN methods. 38 
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8.2.2  Wired Equivalent Privacy (WEP) 1 

8.2.2.1 WEP overview 2 

WEP was defined in the 1999 issue of this standard as a means of protecting the confidentiality of data 3 
exchanged among authorized users of a wireless LAN from casual eavesdropping. Implementation of WEP 4 
is optional. 5 

8.2.2.2  WEP MPDU format 6 

Figure 9 depicts the encrypted Frame Body as constructed by the WEP algorithm. 7 

 8 
 

Pad 
6 bits 

1 octet 

IV 
4 

Data 
(PDU) 

≥ 1 

ICV 
4 

Sizes in Octets 

NOTE: The encipherment process has expanded the original MPDU by 8 Octets, 4 for the Initialization 
Vector (IV) field and 4 for the Integrity Check Value (ICV).  The ICV is calculated on the Data field only. 

Encrypted (Note) 

Init. Vector 
3 Key ID 

2 bits 

 9 

Figure 9—Construction of Expanded WEP MPDU 10 

The WEP ICV shall be a 32-bit field. The expanded Frame Body shall start with a 32-bit IV field. This field 11 
shall contain three sub fields: a three-octet field that contains the initialization vector, a 2-bit key ID field, 12 
and a 6-bit pad field. The ordering conventions defined in 7.1.1 apply to the IV fields and its sub fields and 13 
to the ICV field. The key ID subfield contents select one of four possible secret key values for use in 14 
decrypting this Frame Body. Interpretation of these bits is discussed further in 8.2.2.1.4.6. The contents of 15 
the pad subfield shall be zero. The key ID occupies the two msb of the last octet of the IV field, while the 16 
pad occupies the six lsb of this octet. 17 

8.2.2.3  WEP state 18 

WEP uses encryption keys only; it performs no data authentication, so does not have data integrity keys. 19 
WEP(-40) encryption keys shall be 40-bits in length. WEP-104 keys shall be 104-bits in length. WEP uses 20 
two types of encryption keys: key-mapping keys and default keys. 21 

A key-mapping key is an unnamed key corresponding to a distinct <TA,RA> pair. Implementations shall 22 
use the key-mapping key if it is configured for a <TA,RA> pair. This means the key-mapping key shall be 23 
used to WEP encapsulate or decapsulate MPDUs transmitted by TA to RA, regardless of the presence of 24 
other key types. When a key-mapping key for an address pair is present, the WEP key ID field in the 25 
MPDU shall be set to zero on transmit and ignored on receive. 26 

A default key is an item in a four-element MIB array called dot11WEPDefaultKeys, named by the value of a 27 
related array index called dot11WEPDefaultKeyID. If a key-mapping key is not configured for a WEP 28 
MPDU’s <TA,RA> pair, WEP shall use a default key to encapsulate or decapsulate it. On transmit the key 29 
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selected is the element of the dot11DefaultKeys array given by the index dot11WEPDefaultKeyID—a value 1 
of 0, 1, 2, or 3—corresponding to the first, second, third, or fourth element, respectively, of 2 
dot11WEPDefaultKeys. The value the transmitter encodes in the WEP key ID field of the transmitted 3 
MPDU shall be the dot11WEPDefaultKeyID value. The receiver shall use the key id field of the MPDU to 4 
index into dot11WEPDefaultKeys to obtain the correct default key. All WEP implementations shall support 5 
default keys. 6 

Informative Note: Many implementations also support 104-bit WEP keys. These are used exactly like 40-bit 7 
WEP keys: a 24-bit WEP IV is prepended to the 104-bit key to construct a 128-bit WEP seed, as explained 8 
below in 8.2.2.4.3. The resulting 128-bit WEP seed is then consumed by the RC4 stream cipher. 9 

This construction based on 104-bit keys affords no more assurance than the 40-bit construction and its 10 
implementation and use is in no way condoned by this standard. Rather, the 104-bit construction is noted 11 
only to document de facto practice. 12 

This document sometimes refers to 40-bit WEP as WEP-40, and to 104-bit WEP as WEP-104. 13 

The default value for all WEP keys shall be null. WEP implementations shall discard the containing MSDU 14 
and generate an MA-UNITDATA-STATUS.indication with transmission status indicating that a frame may 15 
not be encapsulated with a null key in response to any request to encapsulate an MPDU with a null key. 16 

8.2.2.4  WEP procedures 17 

8.2.2.4.1  WEP ICV algorithm 18 

The WEP ICV shall be computed using the CRC-32, as defined in 7.1.3.6, calculated over the MPDU Data 19 
(PDU) field. 20 

8.2.2.4.2  WEP encryption algorithm 21 

A WEP implementation shall use the RC4 stream cipher from RSA Data Security, Inc., as its encryption and 22 
decryption algorithm. RC4 uses a PRNG to generate a key stream that it XORs with a plaintext data stream 23 
to produce ciphertext or with a ciphertext stream to produce plaintext. 24 

8.2.2.4.3  WEP seed construction 25 

A WEP shall construct a per-packet key, called a seed, by concatenating an encryption key to an 26 
initialization vector (IV). 27 

For WEP(-40), bits 0 through 39 of the WEP key correspond to bits 24 through 63 of the seed, and bits 0 28 
through 23 of the IV correspond to bits 0 through 23 of the seed, respectively. For WEP-104, bits 0 through 29 
103 of the WEP key correspond to bits 24 through 127 of the seed, and bits 0 through 23 of the IV 30 
correspond to bits 0 through 23 of the seed, respectively. The bit numbering conventions in 7.1.1 apply to 31 
the seed. The seed shall be the input to RC4, in order to encrypt or decrypt the WEP Data and ICV fields. 32 

The WEP implementation encapsulating an MPDU should select a new IV for every packet it WEP 33 
encapsulates. The IV selection algorithm is unspecified. The algorithm the encapsulation uses to select the 34 
encryption key used to construct the seed is also unspecified. 35 

The WEP implementation decapsulating an MPDU shall use the IV from the received MPDU’s Init Vector 36 
subfield. Clause 8.2.2.1.4.6 specifies how the decapsulator selects the key to use to construct the per-packet 37 
key. 38 
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8.2.2.4.4  WEP MPDU encapsulation 1 

WEP shall apply three transformations to the plaintext MPDU to effect the WEP encapsulation. WEP 2 
computes the ICV over the plaintext Data and then appends this after the MPDU data. WEP encrypts the 3 
MPDU plaintext Data and ICV using RC4 with a seed constructed, as specified in Clause 8.2.2.1.4.3. WEP 4 
encodes the IV and key id into the IV field, prepended to the encrypted Data field. 5 

Figure 10 depicts the WEP encapsulation process. The ICV shall be computed and appended to the 6 
plaintext data prior to encryption, but the IV encoding step may occur in any order convenient for the 7 
implementation. 8 

 

Secret Key 

Initialization 
Vector (IV) 

⊕  
Plaintext 

PDU Data 

Ciphertext 

IV 

seed 
⊕  

Message 

Key Sequence 

CRC-32 
Integrity Check Value (ICV)  

RC4 
PRNG 

| |  

  9 

Figure 10—WEP Encapsulation Block Diagram 10 

8.2.2.4.5  WEP MPDU decapsulation 11 

WEP shall apply three transformations to the WEP MPDU to decapsulate its payload. WEP extracts the IV 12 
and key id from the received MPDU. The key id identifies the decryption key to use, which is combined as 13 
described in Clause 8.2.2.1.4.3 to construct the seed for this MPDU. WEP uses the constructed seed to 14 
decrypt the Data field of the WEP MPDU; this produces plaintext data and an ICV. Finally WEP 15 
recomputes the ICV and bit-wise compares it with the decrypted ICV from the MPDU. If the two are bit-16 
wise identical, then WEP removes the IV and ICV from the MPDU, which is accepted as valid; if they 17 
differ in any bit position, WEP generates an error indication to MAC management. MSDUs with erroneous 18 
MPDUs (due to inability to decrypt) shall not be passed to LLC. 19 

Figure 11 depicts a block diagram for WEP decapsulation. Unlike encapsulation, the decapsulation steps 20 
shall be in the indicated order. 21 

 WEP Key 

Plaintext Key stream 

Message 

Ciphertext 

IV 

ICV' = ICV?  

Integrity Algorithm  

RC4 
PRNG 

⊕  
ICV’ 

ICV 

Seed 

||  

 22 

Figure 11—WEP Decapsulation Block Diagram 23 
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8.2.2.4.6  WEP MIB attributes 1 

An MPDU of type Data with the WEP subfield of the Frame Control field equal to 1 is called a WEP 2 
MPDU. Other MPDUs of type Data are called non-WEP MPDUs. 3 

A STA shall not transmit WEP encapsulated MPDUs when value of the MIB variable dot11PrivacyInvoked 4 
is “false.” This MIB variable does not affect MPDU or MMPDU reception. 5 

if dot11PrivacyInvoked is “false” 6 
the MPDU is transmitted without WEP encapsulation 7 

else 8 
if (the MPDU has an individual RA and 9 
there is an entry in dot11WEPKeyMappings for that RA) 10 

if that entry has WEPOn set to “false” 11 
the MPDU is transmitted without WEP encapsulation 12 

else 13 
if that entry contains a key that is null 14 

discard the MPDU’s entire MSDU and generate an 15 
MA-UNITDATA-STATUS.indication primitive to notify 16 
LLC that the MSDU was undeliverable due to a null WEP key 17 

else 18 
encrypt the MPDU using that entry’s key, setting the KeyID 19 
subfield of the IV field to zero 20 

else 21 
if (the MPDU has a group RA and the Privacy subfield 22 
of the Capability Information field in this BSS is set to 0) 23 

the MPDU is transmitted without WEP encapsulation 24 
else 25 

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null 26 
discard the MPDU’s entire MSDU and generate an 27 
MA-UNITDATA-STATUS.indication primitive to notify 28 
LLC that the MSDU was undeliverable due to a null WEP key 29 

else 30 
WEP encapsulate the MPDU using the key 31 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID], 32 
setting the KeyID subfield of the IV field to 33 
dot11WEPDefaultKeyID 34 

When the boolean attribute aExcludeUnencrypted is set to True, non-WEP MPDUs shall not be indicated at 35 
the MAC service interface, and only MSDUs successfully reassembled from successfully decrypted MPDUs 36 
shall be indicated at the MAC service interface. When receiving a frame of type Data, the values of 37 
dot11PrivacyOptionImplemented, dot11WEPKeyMappings, dot11WEPDefaultKeys, 38 
dot11WEPDefaultKeyID, and aExcludeUnencrypted in effect at the time the PHY-RXSTART.indication 39 
primitive is received by the MAC shall be used according to the following decision tree: 40 

if the Protected Frame subfield of the Frame Control Field is zero 41 
if aExcludeUnencrypted is “true” 42 

discard the frame body without indication to LLC and increment 43 
dot11WEPExcludedCount 44 

else 45 
receive the frame without WEP decapsulation 46 

else 47 
if dot11PrivacyOptionImplemented is “true” 48 

if (the MPDU has individual RA and 49 
there is an entry in dot11WEPKeyMappings matching the MPDU’s TA) 50 

if that entry has WEPOn set to “false” 51 
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discard the frame body and increment 1 
dot11WEPUndecryptableCount 2 

else 3 
if that entry contains a key that is null 4 

discard the frame body and increment 5 
dot11WEPUndecryptableCount 6 

else 7 
WEP decapsulate with that key, incrementing 8 
dot11WEPICVErrorCount if the ICV check fails 9 

else 10 
if dot11WEPDefaultKeys[KeyID] is null 11 

discard the frame body and increment 12 
dot11WEPUndecryptableCount 13 

else 14 
WEP decapsulate with dot11WEPDefaultKeys[KeyID], 15 
incrementing dot11WEPICVErrorCount if the ICV check fails 16 

else 17 
discard the frame body and increment dot11WEPUndecryptableCount 18 

8.2.3  Security association management 19 

Pre-RSN security does not have a proper notion of a security association. Pre-RSN security possesses only 20 
one of the attributes, an authentication framework. 21 

8.2.3.1  Authentication 22 

8.2.3.1.1  Overview 23 

The 1999 issue of the standard defines two subtypes of pre-RSN authentication service, Open System and 24 
Shared Key. Shared Key authentication is deprecated, and should not be implemented except for backward 25 
compatibility with legacy equipment. All management frames of subtype Authentication shall be unicast, as 26 
authentication is performed between pairs of stations—i.e., multicast authentication is not allowed. 27 
Management frames of subtype Deauthentication are advisory, and may be sent as group-addressed frames. 28 

A mutual authentication relationship shall exist between two stations following a successful authentication 29 
exchange. Authentication shall be used between stations and the AP in an infrastructure BSS. 30 
Authentication may be used between two STAs in an IBSS. 31 

8.2.3.1.2  Open system authentication 32 

Open System authentication is a null authentication algorithm. Any STA requesting Open System 33 
authentication may be authenticated if dot11AuthenticationType at the recipient station is set to Open 34 
System authentication. A STA may decline to authenticate with another requesting STA. Open System 35 
authentication is the default authentication algorithm for pre-RSN equipment. 36 

Open System authentication utilizes a two-message authentication transaction sequence. The first message 37 
asserts identity and requests authentication. The second message returns the authentication result. If the 38 
result is “successful,” the STAs shall be declared mutually authenticated. 39 

In the following description, the STA initiating the authentication exchange is referred to as the requester, 40 
and the STA to which the initial frame in the exchange is addressed is referred to as the responder. 41 

8.2.3.1.2.1 Open System authentication (first frame) 42 

— Message type: Management 43 
— Message subtype: Authentication 44 
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— Information items: 1 
• Authentication Algorithm Identification = “Open System” 2 
• Station Identity Assertion (in SA field of header) 3 
• Authentication transaction sequence number = 1 4 
• Authentication algorithm dependent information (none) 5 

— Direction of message: From requester to responder. 6 

8.2.3.1.2.2  Open System authentication (final frame) 7 
— Message type: Management 8 
— Message subtype: Authentication 9 
— Information items: 10 

• Authentication Algorithm Identification = “Open System” 11 
• Authentication transaction sequence number = 2 12 
• Authentication algorithm dependent information (none) 13 
• The result of the requested authentication as defined in 7.3.1.9 14 

— Direction of message: From responder to requester. 15 

If dot11AuthenticationType does not include the value “Open System,” the result code shall not take the 16 
value “successful.” 17 

8.2.3.1.3  Shared key authentication 18 

Shared Key authentication seeks to authenticate STAs as either a member of those who know a shared 19 
secret key or a member of those who do not. Shared Key authentication fails to meet this objective, as it 20 
makes public all the information required to trivially recover the key stream used by authentication. 21 

Shared Key authentication requires the WEP privacy mechanism. Shared Key authentication shall be 22 
implemented if WEP is implemented. 23 

This mechanism uses a shared key delivered to participating STAs via a secure channel that is independent 24 
of IEEE 802.11. This shared key is contained in a write-only MIB attribute in an attempt to keep the key 25 
value internal to the MAC. 26 

A STA shall not initiate a Shared Key authentication exchange unless its dot11PrivacyOptionImplemented 27 
attribute is “true.” 28 

In the following description, the STA initiating the authentication exchange is referred to as the requester, 29 
and the STA to which the initial frame in the exchange is addressed is referred to as the responder. 30 

8.2.3.1.3.1  Shared Key authentication (first frame) 31 

— Message type: Management 32 
— Message subtype: Authentication 33 
— Information Items: 34 

• Station Identity Assertion (in SA field of header) 35 
• Authentication Algorithm Identification = “Shared Key” 36 
• Authentication transaction sequence number = 1 37 
• Authentication algorithm dependent information (none) 38 

— Direction of message: From requester to responder 39 

8.2.3.1.3.2  Shared Key authentication (second frame) 40 

Before sending the second frame in the Shared Key authentication sequence, the responder shall use WEP 41 
to generate a string of octets to be used as the authentication challenge text. 42 

— Message type: Management 43 
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— Message subtype: Authentication 1 
— Information Items: 2 

• Authentication Algorithm Identification = “Shared Key” 3 
• Authentication transaction sequence number = 2 4 
• Authentication algorithm dependent information = the authentication result. 5 
• The result of the requested authentication as defined in 7.3.1.9. 6 

If the status code is not “successful,” this shall be the last frame of the transaction sequence, and 7 
the content of the challenge text field is unspecified. 8 
If the status code is “successful,” the following additional information items shall have valid 9 
contents: 10 

Authentication algorithm dependent information = challenge text. 11 

This authentication result shall be of fixed length of 128 octets. The field shall be filled with octets 12 
generated by the WEP pseudo-random number generator (PRNG). The actual value of the 13 
challenge field is unimportant, but the value shall not be a static value. 14 

— Direction of message: From responder to requester 15 

8.2.3.1.3.3  Shared Key authentication (third frame) 16 

The requester shall copy the challenge text from the second frame into the third frame. The third frame shall 17 
be transmitted after encapsulation by WEP, as defined in Clause 8.2.2.1, using the shared key. 18 
— Message type: Management 19 

— Message subtype: Authentication 20 
— Information Items: 21 

• Authentication Algorithm Identification = “Shared Key” 22 
• Authentication transaction sequence number = 3 23 
• Authentication algorithm dependent information = challenge text from the second frame 24 

— Direction of message: From requester to responder 25 

8.2.3.1.3.4  Shared Key authentication (final frame) 26 

The responder shall WEP decapsulate the third frame as described in Clause 8.2.2.1. If the WEP ICV check 27 
is successful, the responder shall compare the decrypted contents of the Challenge Text field with the 28 
challenge text sent in second frame. If they are the same, then the responder shall respond with a successful 29 
status code in the final frame of the sequence. If the WEP ICV check fails or challenge text comparison 30 
fails, the responder shall respond with an unsuccessful status code in final frame. 31 

— Message type: Management 32 
— Message subtype: Authentication 33 
— Information Items: 34 

• Authentication Algorithm Identification = “Shared Key” 35 
• Authentication transaction sequence number = 4 36 
• Authentication algorithm dependent information = the authentication result 37 
The result of the requested authentication. 38 
This is a fixed length item with values “successful” and “unsuccessful.” 39 

— Direction of message: From responder to requester 40 

8.2.3.1.3.5  Shared key MIB attributes 41 

To transmit a frame of type Management, subtype Authentication with an Authentication Transaction 42 
Sequence Number field value of 2, the MAC shall operate according to the following decision tree: 43 

if dot11PrivacyOptionImplemented is “false” 44 
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the MMPDU is transmitted with a sequence of zero octets in the Challenge Text field and 1 
a Status Code value of 13 2 

else 3 
the MMPDU is transmitted with a sequence of 128 octets generated using the WEP 4 
PRNG and a key whose value is unspecified and beyond the scope of this standard and a 5 
randomly chosen IV value (note that this will typically be selected by the same 6 
mechanism for choosing IV values for transmitted data MPDUs) in the Challenge Text 7 
field and a status code value of 0 (the IV used is immaterial and is not transmitted). Note 8 
that there are cryptographic issues involved in the choice of key/IV for this process as the 9 
challenge text is sent unencrypted and therefore provides a known output sequence from 10 
the PRNG. 11 

To receive a frame of type Management, subtype Authentication with an Authentication Transaction 12 
Sequence Number field value of 2, the MAC shall operate according to the following decision tree: 13 

if the Protected Frame subfield of the Frame Control field is 1 14 
respond with a status code value of 15 15 

else 16 
if dot11PrivacyOptionImplemented is “true” 17 

if there is a mapping in dot11WEPKeyMappings matching the MSDU’s TA 18 
if that key is null 19 

respond with a frame whose Authentication Transaction 20 
Sequence Number field is 3 that contains the appropriate 21 
Authentication Algorithm Number, a status code value of 15 22 
and no Challenge Text field, without encrypting the contents 23 
of the frame 24 

else 25 
respond with a frame whose Authentication Transaction 26 
Sequence Number field is 3 that contains the appropriate 27 
Authentication algorithm Number, a status code value of 0 and 28 
the identical Challenge Text field, encrypted using that key, 29 
and setting the key ID subfield in the IV field to 0 30 

else 31 
if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null 32 

respond with a frame whose Authentication Transaction 33 
Sequence Number field is 3 that contains the appropriate 34 
Authentication Algorithm Number, a status code value of 15 35 
and no Challenge Text field, without encrypting the contents 36 
of the frame 37 

else 38 
respond with a frame whose Authentication Transaction 39 
Sequence Number field is 3 that contains the appropriate 40 
Authentication Algorithm Number, a status code value of 0 41 
and the identical Challenge Text field, WEP encapsulating the 42 
frame under the key 43 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID], and setting 44 
the key ID subfield in the IV field to dot11WEPDefaultKeyID 45 

else 46 
respond with a frame whose Authentication Transaction Sequence Number field 47 
is 3 that contains the appropriate Authentication Algorithm Number, a status 48 
code value of 13 and no Challenge Text field, without encrypting the contents of 49 
the frame 50 

When receiving a frame of type Management, subtype Authentication with an Authentication Transaction 51 
Sequence Number field value of 3, the MAC shall operate according to the following decision tree: 52 

if the Protected Frame subfield of the Frame Control field is zero 53 
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respond with a status code value of 15 1 
else 2 

if dot11PrivacyOptionImplemented is “true” 3 
if there is a mapping in dot11WEPKeyMappings matching the MSDU’s TA 4 

if that key is null 5 
respond with a frame whose Authentication Transaction 6 
Sequence Number field is 4 that contains the appropriate 7 
Authentication Algorithm Number, and a status code value of 8 
15 without encrypting the contents of the frame 9 

else 10 
WEP decapsulate with that key, incrementing 11 
dot11WEPICVErrorCount and responding with a status code 12 
value of 15 if the ICV check fails 13 

else 14 
if dot11WEPDefaultKeys[KeyID] is null 15 

respond with a frame whose Authentication Transaction 16 
Sequence Number field is 4 that contains the appropriate 17 
Authentication Algorithm Number, and a status code value of 18 
15 without encrypting the contents of the frame 19 

else 20 
WEP decapsulate with dot11WEPDefaultKeys[KeyID], 21 
incrementing dot11WEPICVErrorCount and responding with a 22 
status code value of 15 if the ICV check fails 23 

else 24 
respond with a frame whose Authentication Transaction Sequence Number field 25 
is 4 that contains the appropriate Authentication Algorithm Number, and a status 26 
code value of 15 27 

The attribute dot11PrivacyInvoked shall not take the value “true” if the attribute 28 
dot11PrivacyOptionImplemented is “false.” Setting dot11WEPKeyMappings to a value that includes more 29 
than dot11WEPKeyMappingLength entries is illegal and shall have an implementation-specific effect on the 30 
operation of the privacy service. Note that dot11WEPKeyMappings may contain from zero to 31 
dot11WEPKeyMappingLength entries, inclusive. 32 

The values of the attributes in the aPrivacygrp should not be changed during the authentication sequence, as 33 
unintended operation may result. 34 

8.3  RSN data privacy protocols 35 

An RSN defines three data privacy protocols, named TKIP, WRAP, and CCMP. This section defines these 36 
protocols. 37 

8.3.1  Overview 38 

This standard defines three RSN data privacy protocols, TKIP, WRAP, and CCMP. TKIP provides pre-39 
RSN hardware devices with a way to securely interoperate with RSN-capable devices. WRAP and CCMP 40 
are both protocol based on 128-bit AES, the first in OCB mode, and the second in CCM mode. 41 

CCMP shall be mandatory-to-implement in all IEEE 802.11 equipment claiming RSN compliance. 42 
Implementation of TKIP and WRAP is optional for RSN compliance. Pre-RSN devices may be patched to 43 
implement TKIP, to interoperate with RSN-compliant devices that also implement TKIP. Use of any of the 44 
privacy algorithms depends on local policies. 45 

Because of its weakness, IEEE 802.11 recommends not using TKIP except as a patch to pre-RSN 46 
equipment. RSN devices should implement TKIP only to allow interoperability with pre-RSN hardware 47 
implementing the TKIP patch. 48 
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8.3.2  Temporal Key Integrity Protocol (TKIP) 1 

8.3.2.1  TKIP overview 2 

The Temporal Key Integrity Protocol (TKIP) is a cipher suite enhancing the WEP protocol on pre-RSN 3 
hardware. This protocol uses WEP. TKIP surrounds WEP with new algorithms: 4 

1. A transmitter calculates a keyed cryptographic message integrity code, or MIC, over the MSDU 5 
source and destination addresses and the MSDU plaintext data. TKIP appends the computed MIC 6 
to the MSDU data prior to fragmentation into MPDUs. The receiver verifies the MIC after 7 
decryption, ICV checking, and reassembly of the MPDUs into an MSDU, and discards any 8 
received MSDUs with invalid MICs. This defends against forgery attacks, and allows the MIC to 9 
be computed by software on the host. 10 

2. Because an adversary can compromise the TKIP MIC with relatively few messages, TKIP also 11 
implements countermeasures, to rate limit key updates. The countermeasures bound the 12 
probability of a successful forgery and the amount of information an attacker can learn about a key. 13 

3. TKIP uses a packet TKIP sequence counter, or TSC, to sequence the MPDUs it sends. The 14 
receiver drops MPDUs received out of order; i.e., not received with strictly increasing sequence 15 
numbers. This provides a weak form of replay protection. TKIP encodes the packet sequence 16 
counter as a WEP IV, to communicate the TSC value from the sender to the receiver. 17 

4. TKIP uses a cryptographic mixing function to combine a temporal key and the TSC into the WEP 18 
seed, which includes the WEP IV. The receiver recovers the TSC from a received MPDU and 19 
utilizes the mixing function to compute the same WEP seed needed to correctly decrypt the 20 
MPDU. The key mixing function is designed to defeat weak-key attacks against the WEP key. 21 

8.3.2.1.1  TKIP encapsulation 22 

TKIP enhances the WEP encapsulation with several additional functions, as depicted in Figure 12 below. 23 

1. TKIP computes the MIC over the MSDU source address, destination address, priority, and data, 24 
and appends the computed MIC to the MSDU; TKIP discards any MIC padding prior to appending 25 
the MIC. 26 

2. TKIP fragments the MSDU into one or more MPDUs; TKIP assigns a monotonically incrementing 27 
TSC value to each MPDU it generates, taking care that all the MPDUs generated from the same 28 
MSDU use counter values from the same 16-bit counter space. 29 

3. For each MPDU, TKIP uses the key mixing function to compute the WEP seed. 30 

4. TKIP represents the WEP seed as a WEP IV and RC4 key, and passes these with each MPDU to 31 
WEP for encapsulation. WEP uses the WEP seed as a WEP default key, identified by a key id 32 
associated with the temporal key. 33 

In the figure TTAK denotes the intermediate key produced by the phase 1 of the TKIP mixing function (see 34 
8.3.2.4.3); TTAK is short-hand for “TKIP mixed Transmit Address and Key”. 35 
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Figure 12—TKIP Encapsulation Block Diagram 3 

8.3.2.1.2  TKIP decapsulation 4 

TKIP enhances the WEP decapsulation process with the following additional steps. 5 

1. Before WEP decapsulating a received MPDU, TKIP extracts the TSC sequence number and key id 6 
from the WEP IV. TKIP discards a received MPDU that violates the sequencing rules, and 7 
otherwise uses the mixing function to construct the WEP seed. 8 

2. TKIP represents the WEP seed as a WEP IV and RC4 key and passes these with the MPDU to 9 
WEP for decapsulation. 10 

3. If WEP indicates the ICV check succeeded, the implementation reassembles the MPDU into an 11 
MSDU. If the MSDU reassembly succeeds, the receiver verifies the MIC. If it fails, then the packet 12 
is discarded. 13 

4. The MIC verification step recomputes the MIC over the MSDU source address, destination 14 
address, priority, and MSDU data (but not the MIC field), and bit-wise compares the result against 15 
the received MIC. 16 

5. If the received and the locally computed MIC are identical, the verification succeeds, and TKIP 17 
shall deliver the MSDU to the upper layer. If the two differ in any bit position, then the verification 18 
fails, the receiver discards the packet, and engages in appropriate countermeasures. 19 

 20 
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Figure 13—TKIP Decapsulation Block Diagram 2 

8.3.2.2  TKIP MPDU formats 3 

TKIP reuses pre-RSN WEP. It extends the MPDU by four (4) octets, to accommodate the an extension to 4 
the WEP IV, denoted by the Extended IV field, and extends the MSDU format by eight (8) octets, to 5 
accommodate the new MIC field. TKIP inserts the Extended IV field immediately after the WEP IV field 6 
and before the encrypted data. TKIP appends the MIC to the MSDU Data field; the MIC becomes part of 7 
the encrypted data. 8 

Once the MIC is appended to the MSDU data, the TKIP data encapsulation can proceed in one of two ways. 9 

• If the MSDU-with-MIC can be encoded within a single WEP-encapsulated MPDU, TKIP 10 
encapsulates the MSDU in a single MPDU. 11 

• If the MSDU-with-MIC cannot be encoded within a single WEP-encapsulated MDPU, the MSDU-12 
with-MIC is fragmented into appropriately sized MPDUs. WEP encapsulates each MPDU. Note 13 
that the MIC may span the second to last and last MPDUs. 14 

Figure 14 below depicts the layout of the encrypted MPDU when using TKIP-based privacy. Note the 15 
Figure only depicts the case when the MSDU can be encapsulated  16 

 17 
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Note: The encipherment process has expanded the original MPDU size by  20 octets, 4 f or the Initialization v ector (IV) / Key
ID f ield, 4 f or the extended IV f ield, 8 f or the Message Integrity Code (MIC) and 4 f or the Integregty Check Value (ICV).
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Encry pted
(note)

Extended IV
4 octets

ICV
4

octets

IV32Expanded IV16

1 
 2 

Figure 14—Construction of Expanded TKIP MPDU 3 

The ExtIV bit in the KeyId octet indicates the presence or absence of an extended IV. If the ExtIV bit is ‘0’ 4 
only the old-style non-extended IV is transferred. If the ExtIV bit is ‘1’ an extended IV of 4 octets follows 5 
the original IV. For TKIP the ExtIV bit shall be set, and the Extended IV field shall be supplied. The ExtIV 6 
bit shall be 0 for WEP packets. 7 

IV0 is the most significant octet of the IV and IV5 the least significant. Octets IV4 and IV5 form the IV 8 
sequence number part and are used with the TKIP phase 2 key hashing. Octets IV0 – IV3 are used in the 9 
TKIP phase 1 key hashing. It encodes the least significant 16 bits of the whole 48-bit IV. As soon as this 10 
lower 16 bit sequence number rolls over (0xFFFF → 0x0000), the extended IV value—i.e., the upper 32 11 
bits of the entire 48-bit IV—must be incremented by 1. 12 

Informational note: The rationale for this construction is: 13 

• Aligning on word boundaries eases implementation on legacy devices 14 

• Adding 4 octets of extended IV eliminates IV exhaustion as a reason to re-key. 15 

• Retain IV/Key-ID of 4 octets, add 4 octets and use the last 2 octets (16bits) of the IV as the sequence 16 
number. 17 

• Key ID octet changes – Use one bit (bit 5) to indicate that an extended IV is present. This allows the 18 
receiver/transmitter to know that the extended mode is present. The receiver/transmitter processes the 19 
following 4 octets as the extended IV. The receiving/transmitting station also uses the value of IV4 and IV5 20 
octets to detect that a key rollover has occurred.  When a key rollover has occurred, a new Phase 1 value is 21 
calculated, and used to decrypt the received/transmitted frame. 22 

The extended IV field shall not be encrypted. 23 

Note that if the TSC is represented as an octet string according to the conventions of 7.1.1, then 24 

TSC = TSC0 TSC1 TSC2 TSC3 TSC4 TSC5 25 

where TSC0 is the least significant octet and TSC5 the most significant. The mixing function uses the least 26 
significant octet of the TSC as RC4Key[0], and the second least significant octet at RC4[2]: 27 

RC4Key[0] = TSC0 and RC4Key[2] = TSC1. 28 
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The effect of this construction is the TSC is encoded as a little-Endian integer in each TKIP MPDU. TKIP 1 
shall encrypt all the MPDUs generated from one MSDU under the same key. 2 

8.3.2.3  TKIP state 3 

TKIP augments the dot11WEPKeyMappings and dot11WEPDefaultKeyTable MIB arrays with two new 4 
variables each, respectively dot11KeyMappingValue and dot11KeyMappingSize, and 5 
dot11DefaultKeyValue and dot11DefaultKeySize. The variables dot11DefaultKeySize and 6 
dot11KeyMappingSize are integers and indicate the length of the key in octets in the dot11DefaultKeyValue 7 
and dot11KeyMappingValue variables, respectively. The variables dot11DefaultKeyValue and 8 
dot11KeyMappingValue are 32 octet strings in size and supply the TKIP encryption key, concatenated with 9 
the TKIP send and receive integrity keys, as described in Annex D. 10 

 8.3.2.4  TKIP procedures 11 

8.3.2.4.1  TKIP MIC 12 

Flaws in the original IEEE 802.11 WEP design caused it to fail to meet its goal of protecting data traffic 13 
content from casual eavesdroppers. Among the most significant flaws was it lack of a mechanism to defeat 14 
message forgeries and other active attacks. To defend against active attacks, TKIP requires a MIC, named 15 
Michael.  Michael offers only weak defenses against message forgeries, but it constitutes the best that can 16 
be achieved with the majority of legacy hardware. 17 

Annex F contains a “C++” language reference implementation of the TKIP MIC. It also provides test 18 
vectors for the MIC. 19 

Informative Note: Before defining the details of the Michael MIC, it is useful to review the context in which this 20 
mechanism must work. Active attacks enabled by the original WEP design include: 21 

• Bit-flipping attacks; 22 

• Data (payload) truncation and concatenation; 23 

• Fragmentation attacks; 24 

• Iterative guessing attacks against the key; 25 

• Redirection by modifying the MPDU DA or SA fields; 26 

• Impersonation attacks by modifying the MPDU SA or TA fields. 27 

The MIC makes it more difficult for any of these attacks to succeed. 28 

With the Michael design, all of these attacks remain at the MPDU level. The MIC, however, applies to the MSDU, 29 
so blocks successful MPDU level attacks. TKIP applies the MIC to the MSDU at the transmitter and verifies it at 30 
the MSDU level at the receiver. If an MIC check fails at the MSDU level, the implementation shall discard the 31 
MSDU and invoke counter-measures. 32 

Figure 15 depicts different peer layers communicating: 33 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

Figure 15—TKIP MIC Relation to 802.11 Processing (Informative) 8 

The figure depicts an architecture whereby the MIC is logically appended to the raw MSDU in response to 9 
the MA-UNITDATA.request primitive. That is, the TKIP MIC is computed over 10 

• the MSDU destination address (DA); 11 

• the MSDU source address (SA); 12 

• the MSDU priority; and 13 

• the entire unencrypted MSDU data (payload). 14 

 15 

DA SA Priority 0 Data MIC 

Note the DA, SA and a one octet priority field and 3 octet reserved (0) field are used for calculating the MIC 16 
and are not transmitted. The priority field shall be 0 and reserved for future use for IEEE 802.11 traffic class. 17 

TKIP appends the MIC at the end of the MSDU payload, reducing the maximum allowed MSDU payload 18 
size by the size of the MIC field, which is 8 bytes for Michael. The IEEE 802.11 MAC then applies its 19 
normal processing to transmit this MSDU-with-MIC as a sequence of one or more MPDUs. This means the 20 
MSDU plus MIC can be partitioned into one or more MPDUs, the WEP ICV is calculated over each MDPU, 21 
and MIC can be partitioned across the final two MPDUs. The TKIP MIC augments but does not replace the 22 
WEP ICV. TKIP protects the MIC with encryption, because it is a weak construction; the encryption then 23 
makes MIC forgeries somewhat more difficult. The WEP ICV helps prevent false positives, whereby normal 24 
operation rather than attack corrupt the transmitted MIC value. 25 

The receiver reverses this procedure to reassemble the MSDU, and, after the MSDU has been logically 26 
reassembled, the MAC verifies the MIC prior to delivery of the MSDU to upper layers. If the MIC validation 27 
succeeds, the MAC delivers the MSDU to the appropriate IEEE 802 SAP via the MA-UNITDATA.indication 28 
primitive. If the MIC validation fails, the MAC discards the MSDU, increments a counter, and invokes 29 
counter-measures. 30 

TKIP calculates the MIC over the MSDU rather than the MPDU for two reasons. First, it detects attacks 31 
against MPDUs more easily than can be done at the MPDU level alone. Second, it increases the 32 
implementation flexibility, allowing the MIC to be implemented either within the STA hardware or in a 33 
software driver running on either the STA or the STA’s host. 34 

It should be noted that a MIC cannot provide complete forgery protection, as it cannot defend against replay 35 
attacks. TKIP provides replay detection by IV sequencing, ICV validation, and rekeying. Furthermore, if 36 
TKIP is utilized with a group key, an “insider” STA can masquerade as any other STA belonging to the 37 
group. Hence, the protection afforded by the TKIP MIC is directly affected by the local keying policy; group 38 
keys should be avoided. 39 

MSDU 

MSDU+MIC 

MPDU(s) 

MSDU 

MSDU+MIC 

MPDU(s) 802.11 

Upper Layers/LLC 
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Michael generates a 64-bit MIC, with a design goal of 20 bits of security. The Michael key consists of 64-1 
bits, represented as an 8-byte sequence k0...k7. This is converted to two 32-bit little-Endian words K0 and K1. 2 
Throughout the Michael design, all conversions between bytes and 32-bit words shall use the little-Endian 3 
conventions, given in 7.1.1. 4 

Michael operates on MSDUs. An MSDU consists of octets m0...mn–1 where n is the number of MSDU 5 
octets, including source address, destination address, and data field. The Michael algorithm does not 6 
interpret the MSDU data field, which typically begins with an IEEE 802 SNAP header. The message is 7 
padded at the end with a single byte with value 0x5a, followed by between 4 and 7 zero bytes. The number 8 
of zero bytes is chosen so that the overall length of the padded MSDU is a multiple of 4. The padding is not 9 
transmitted with the MSDU; it is used to simplify the computation over the final block. The MSDU is then 10 
converted to a sequence of 32-bit words M0 ...MN-1, where N = (n+5)/4, and where a means to round a 11 
up to the nearest integer. By construction MN–1 = 0  and MN–2 ≠ 0. 12 

The MIC value is computed iteratively by starting with the key value and applying a block function b for 13 
every message word, as shown in Figure 16. The algorithm loop runs a total of N times (i takes on the 14 
values 0 to N–1 inclusive), where N is as above, the number of 32-bit words comprising the padded MSDU. 15 
The algorithm results in two words (l,r), which are converted to a sequence of eight octets using the least-16 
significant-octet-first convention. This is the MIC value. The MIC value is appended to the MSDU as data 17 
to be sent. Note that the padding is used in the MIC computation only, and is discarded prior to appending 18 
the MIC to the MSDU. 19 

Input: Key (K0, K1) and padded MPDU (represented as32-bit words) M0...MN 20 
Output: MIC value (V0, V1) 21 
MICHAEL((K0, K1) , (M0,...,MN)) 22 

(l,r) ← (K0, K1) 23 
for i = 0 to N–1 do 24 

l ← l ⊕ Mi 25 
(l, r) ← b(l, r) 26 

return (l,r) 27 

Figure 16—Michael message processing 28 

Figure 17 defines the Michael block function b. It is a Feistel-type construction with alternating additions 29 
and XOR operations. It uses <<< to denote the rotate-left operator on 32-bit values, >>> for the rotate-right 30 
operator, and XSWAP for a function that swaps the position of the two least significant bytes and the 31 
position of the two most significant bytes in a word. 32 

Input: (l,r) 33 
Output: (l,r) 34 
b(L,R) 35 

r ← r ⊕ (l <<< 17) 36 
l ← (l + r) mod 232 37 
r ← r ⊕ XSWAP(l) 38 
l ← (l + r) mod 232 39 
r ← r ⊕ (l <<< 3) 40 
l ← (l + r) mod 232 41 
r ← r ⊕ (l >>> 2) 42 
l ← (l + r) mod 232 43 
return (l, r) 44 

Figure 17—Michael block function 45 
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8.3.2.4.2  TKIP counter-measures 1 

Michael’s design trades off security in favor of implementability on pre-RSN equipment. Michael provides 2 
only weak protection against active attack. A failure of the MIC in a received MSDU indicates a probable 3 
active attack. If TKIP implementation detects a probable active attack, TKIP shall take countermeasures as 4 
specified in this clause. These counter-measures accomplish the following goals: 5 

 The current authentication key and encryption key shall be deleted and not used again. This 6 
prevents the attacker from learning anything about those keys from the MIC failure. 7 

 Significant effort should be made to log the event as a security-relevant matter. A MIC failure is an 8 
almost certain indication of an active attack, and warrants a follow-up by the system administrator. 9 

 The rate of MIC failures must be kept below one per minute. This implies that new keys must not 10 
be generated if devices frequently receive packets with forged MICs. The slowdown makes it 11 
difficult for an attacker to make a large number of forgery attempts in a short time. 12 

Before verifying the MIC, the receiver shall check the CRC, ICV, and IV for all related MPDUs. MPDUs 13 
with invalid CRCs, ICVs, or with whose MPDUs’ IVs falling before the IV window shall be discarded 14 
before checking the MIC. This avoids unnecessary MIC failure events. Checking the IV before the MIC 15 
makes countermeasure-based DOS attacks harder to perform. 16 

If an Authenticator’s STA detects a MIC failure on a received TKIP-protected MSDU, it shall take the 17 
following steps: 18 

1. For an MSDU which was protected with a Group key: 19 

a. Delete the Group encryption and integrity keys in question. 20 

b. Wait until 60 seconds have occurred from the last MIC failure (either from an EAPOL-Key 21 
message with a MIC failure or a local MIC failure occurred). 22 

c. Update the Group Transient Key to all associated stations. 23 

d. Log details of the MIC failure. 24 

2. For an MSDU which was protected with a Pairwise Key: 25 

a. Drop any received data messages except IEEE 802.1X messages until the Pairwise Key is 26 
deleted or changed. 27 

b. Wait until 60 seconds have occurred from the last MIC failure (either from an EAPOL-Key 28 
message with a MIC failure or a local MIC failure). 29 

c. Initiate a 4-way handshake with the peer STA to reestablish a new Pairwise key. 30 

d. Log details of the MIC failure. 31 

An AP shall drop any data broadcast/multicast MSDU received from a non-AP STA. 32 

If a Supplicant’s STA detects a MIC failure, it shall take the following steps: 33 

1. For an MSDU which was encrypted with a Group Key: 34 

a. Delete the Group encryption and integrity keys in question. 35 
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b. Send an EAPOL-Key message requesting for a new Group key. 1 

c. Log details of the MIC failure at the station and AP. 2 

2. For an MSDU which was protected with a Pairwise Key: 3 

a. Drop any received data messages except IEEE 802.1X messages until the Pairwise Key is 4 
deleted or changed. 5 

b. Send an EAPOL-Key message requesting for a new Pairwise key. 6 

c. Log details of the MIC failure at the peer STAs. 7 

An EAPOL-Key message from Supplicant to Authenticator with Request bit set asks the Authenticator to 8 
change the indicated key. 9 

After Michael failure detected either locally or is signaled by a received EAPOL-Key Request, the 10 
Authenticator shall generate and distribute at most one replacement key during the 60 seconds following the 11 
error. This means that when a Michael failure occurs involving a Group key, the Authenticator generates 12 
and distributes a new GTK to all associated stations if a second Michael failure involving the Group Key 13 
has not been detected within the prior 60 seconds. If a second failure occurs within the 60 second window, 14 
the Authenticator waits a full 60 seconds before generating and distributing another replacement key. 15 
Similarly, if a Michael failure involving a Pairwise Key occurs, the Authenticator shall generate and 16 
distribute a replacement PTK via a 4-way handshake if it detects no other Michael failure involving a PTK 17 
within 60 seconds of the Michael failure. If a second failure is detected within 60 seconds of a previous 18 
Michael failure, the Authenticator shall wait a full 60 seconds before replacing the PTK. 19 

Note that Michael failures delay the generation and distribution keys to STAs other than those involved in 20 
the failure. This prevents an attacker attacking a Michael key, then forcing the STA to re-associate, and then 21 
repeating the attack cycle. 22 

8.3.2.4.3  TKIP mixing function 23 

Annex F defines the TKIP S-box, a “C” language reference implementation of the TKIP mixing function. It 24 
also provides test vectors for the mixing function. 25 

The mixing function has two phases. The first phase mixes the dot11DefaultKeyValue or 26 
dot11KeyMappingValue (TK) with the transmitter address (TA) and TSC. A STA may cache the output of 27 
this phase to reuse with subsequent MPDUs associated with the same TK and TA. The second phase mixes 28 
the output of the first phase with the TSC and TK to produce the WEP seed, also called the per-packet key. 29 
The WEP seed may be computed well before it is used.  The two-phase process may be summarized as: 30 

TTAK ← Phase1(TK, TA, TSC) 31 
WEP seed ← Phase2(TTAK, TSC) 32 

Phase 1 is somewhat simpler than Phase 2. This simplicity is possible because the output of Phase 1 is not 33 
used directly as an RC4 key. 34 

Both Phase 1 and Phase 2 rely on an S-box, defined in Annex F. The S-box substitutes one 16-bit value 35 
with another 16-bit value. This function is a non-linear substitution, and may be implemented as a table look 36 
up. 37 

Phase 1 Definition. The inputs to the first phase of the temporal key mixing function shall be a 38 
dot11DefaultKeyValue or dott11KeyMappingValue (TK), the transmitter address (TA), and the TSC. The 39 
TK shall be 128 bits in length. Only the most significant 32 bits of the TSC and the first 80 bits of TK are 40 
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used in Phase 1. The output, called TTAK, shall be 80 bits in length and is represented by an array of 16-bit 1 
values TTAK0 TTAK1 TTAK2 TTAK3 TTAK4. 2 

The description of the phase 1 algorithm treats all of the following values as arrays of 8-bit values: 3 
TA0..TA5, TK0..TK12. The TA byte order is represented according to the conventions from 7.1.1, and the first 4 
three bytes represent the OUI. 5 

The exclusive-or (⊕) operation, the bit-wise-and (&) operation, and the addition (+) operation are used in 6 
the Phase 1 specification. . A loop counter, called i, and an array index temporary variable, called j, are also 7 
employed.  8 

One function, Mk16, is used in the definition of Phase 1. The function Mk16 constructs a 16-bit value from 9 
two 8-bit inputs as Mk16(X,Y) = 256⋅X+Y. 10 

Two steps comprise the phase 1 algorithm. The first step initializes TTAK from TSC and TA. The second 11 
step uses an S-box to iteratively mix the keying material into the 80-bit TTAK. The second step sets the 12 
PHASE1_LOOP_COUNT to 8. 13 

Input: transmit address TA0…TA5, temporal key TK0..TK12, and TSC0..TSC2 14 
Output: intermediate key TTAK0..TTAK4 15 

PHASE1-KEY-MIXING(TA0…TA5, TK0..TK12, TSC0..TSC2) 16 
PHASE1_STEP1: 17 
TTAK0 ← TSC0 18 
TTAK1 ← TSC1 19 
TTAK2 ← Mk16(TA1,TA0) 20 
TTAK3 ← Mk16(TA3,TA2) 21 
TTAK4 ← Mk16(TA5,TA4) 22 

PHASE1_STEP2: 23 
for i = 0 to PHASE1_LOOP_COUNT-1 24 

j ← 2⋅(i & 1) 25 
TTAK0 ← TTAK0 + S[TTAK4 ⊕ Mk16(TK1+j,TK0+j)] 26 
TTAK1 ← TTAK1 + S[TTAK0 ⊕ Mk16(TK5+j,TK4+j)] 27 
TTAK2 ← TTAK2 + S[TTAK1 ⊕ Mk16(TK9+j,TK8+j)] 28 
TTAK3 ← TTAK3 + S[TTAK2 ⊕ Mk16(TK13+j,TK12+j)] 29 
TTAK4 ← TTAK4 + S[TTAK3 ⊕ Mk16(TK1+j,TK0+j)] + i 30 

end 31 

Figure 18—Phase 1 key mixing 32 

 33 

Phase 2 Definition. The inputs to the second phase of the temporal key mixing function shall be the output 34 
of the first phase (TTAK) together with the TK and the TKIP sequence counter TSC. The TTAK is 80-bits in 35 
length. The TSC is 48 bits. Only the last 24 bits of TK are used in Phase 2. The output is the WEP seed, 36 
which is a per-packet key, and is 128-bits in length. The constructed WEP seed has an internal structure 37 
conforming to the WEP specification. That is, the first 24 bits of the WEP seed shall be transmitted in 38 
plaintext as the WEP IV.  As such, these 24 bits are used to convey lower 16 bits of the TSC from the 39 
sender (encryptor) to the receiver (decryptor).  The rest of the TSC shall be conveyed in the EIV field, in 40 
big-Endian order.  The TK and TTAK values are represented as in Phase 1. The WEP seed is treated as an 41 
array of 8-bit values: Seed0…Seed15. The TSC shall be treated as an array of 16-bit value TSC0 TSC1 TSC2. 42 

The pseudo code specifying the Phase 2 mixing function employs one variable: PPK. PPK is 128-bits, and 43 
it is represented as an array of 16-bit values: PPK0..PPK7. The pseudo code also employs a loop counter, 44 
called i. As detailed below, the mapping from the 16-bit PPK values to the 8-bit WEPseed values is 45 
explicitly little-Endian to match the Endian architecture of the most common processors used for this 46 
application. 47 
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The exclusive-or operation (⊕), the addition operation (+), the and operation (&), the or operation (|), and 1 
the right bit shift operation (>>) are used the specification of Phase 2 below. 2 

The algorithm specification relies on four functions. 3 

• The first function, Lo8, references the least significant 8 bits of the 16-bit input value. 4 

• The second function, Hi8, references the most significant 8 bits of the 16-bit value. 5 

• The third function RotR1 rotates its 16-bit argument 1 bit to the right. 6 

• The fourth function is Mk16, already used in Phase 1, defined by Mk16(X,Y) = 256⋅X+Y, and 7 
constructs a 16-bit output from two 8 bit inputs. 8 

Note: The rotate and addition operations in STEP2 makes Phase 2 particularly sensitive to the Endian 9 
architecture of the processor, although the performance degradation due to running this algorithm on a big-10 
Endian processor should be minor. 11 

The second phase is comprised of three steps. 12 

• STEP1 makes a copy of the TTAK and brings in the TSC. 13 

• STEP2 is a 96-bit bijective mixing, employing an S-box. 14 

• STEP3 brings in the last of the TK bits and assigns the 24-bit WEP IV value. 15 

Input: intermediate key TTAK0…TTAK4, TK, and TKIP sequence counter TSC 16 
Output: WEP Seed WEPSeed0…WEPSeed15 17 

PHASE2-KEY-MIXING(TTAK0…TTAK4, TK, TSC) 18 
PHASE2_STEP1: 19 
PPK0 ← TTAK0 20 
PPK1 ← TTAK1 21 
PPK2 ← TTAK2 22 
PPK3 ← TTAK3 23 
PPK4 ← TTAK4 24 
PPK5 ← TTAK4 + TSC 25 

PHASE2_STEP2: 26 
PPK0 ← PPK0 + S[PPK5 ⊕ Mk16(TK1,TK0)] 27 
PPK1 ← PPK1 + S[PPK0 ⊕ Mk16(TK3,TK2)] 28 
PPK2 ← PPK2 + S[PPK1 ⊕ Mk16(TK5,TK4)] 29 
PPK3 ← PPK3 + S[PPK2 ⊕ Mk16(TK7,TK6)] 30 
PPK4 ← PPK4 + S[PPK3 ⊕ Mk16(TK9,TK8)] 31 
PPK5 ← PPK5 + S[PPK4 ⊕ Mk16(TK11,TK10)] 32 
PPK0 ← PPK0 + RotR1(PPK5 ⊕ Mk16(TK13,TK12)) 33 
PPK1 ← PPK1 + RotR1(PPK0 ⊕ Mk16(TK15,TK14)) 34 
PPK2 ← PPK2 + RotR1(PPK1) 35 
PPK3 ← PPK3 + RotR1(PPK2) 36 
PPK4 ← PPK4 + RotR1(PPK3) 37 
PPK5 ← PPK5 + RotR1(PPK4) 38 

PHASE2_STEP3: 39 
WEPSeed0 ←  Hi8(TSC) 40 
WEPSeed1 ← (Hi8(TSC) | 0x20) & 0x7F 41 
WEPSeed2 ←  Lo8(TSC) 42 
WEPSeed3 ←  Lo8((PPK5 ⊕ Mk16(TK1,TK0)) >> 1) 43 
for i = 0 to 5 44 
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WEPSeed4+(2⋅i) ← Lo8(PPKi) 1 
WEPSeed5+(2⋅i) ← Hi8(PPKi) 2 

end 3 

return WEPSeed0…WEPSeed15 4 

Figure 19—Phase 2 key mixing 5 

The WEP IV format carries three octets. Step 3 of Phase 2 determines the value of each of these three 6 
octets. The construction was selected to preclude the use of known weak keys. The recipient can reconstruct 7 
the least significant 16 bits of the TSC used by the originator by concatenating the first and third octets, 8 
ignoring the second octet. The remaining 32 bits of the TSC are obtained from the EIV. 9 

Informative Note: S-box. The algorithm S-box utilized by the Phase 1 and Phase 2 functions is defined in 10 
Annex F. The S-box substitutes one 16-bit value with another 16-bit value. This is a non-linear substitution. 11 
The reference implementation in Annex F implements as a table look-up. The table look-up can be organized 12 
as either a single table with 65,536 entries and a 16-bit index (128 Kbytes of table) or two tables with 256 13 
entries and an 8-bit index (1024 bytes for both tables). When the two smaller tables are used, the high-order 14 
byte is used to obtain a 16-bit value from one table and the low-order byte is used to obtain a 16-bit value 15 
from the other table; the S-box output is the exclusive-or (⊕) of the two 16-bit values. The second S-box 16 
table is a byte-swapped replica of the first. 17 

The sample code in Annex F uses the two smaller table approach. The S-box tables can be extracted from the 18 
AES reference implementation. 19 

Informative Note: The transmitter address (TA) is mixed into the temporal key (TK) in the first phase of the 20 
hash function. Implementations can achieve a significant performance improvement by caching the output of 21 
the first phase. The Phase 1 output is the same for 216 = 65,536 consecutive packets from the same TK and 22 
TA. Consider the simple case where a station communicates only with an access point (AP). The station will 23 
perform the first phase using its own address, and it will be used to encrypt traffic sent to the access point. 24 
The station will perform the first phase using the access point address, and it will be used to decrypt traffic 25 
received from the access point. 26 

With TSC 48 bits in size the key caches will need to be updated when the lower 16 bits of the TSC wrap and 27 
the upper 32 bits need to be updated. 28 

8.3.2.4.4  TKIP replay protection 29 

TKIP implementations shall reuse the WEP IV field to defend against replay attacks by implementing the 30 
following rules. 31 

1. As with WEP IVs, TKIP TSC values shall correspond to MPDUs. 32 

2. The TSC (48 bit counters) shall be selected from a single pool by each transmitter for each 33 
temporal key—i.e., each transmitter has its own unique counter for each directional temporal key 34 
established. 35 

3. The TSC shall be implemented as a 48-bit monotonically incrementing counter, initialized to zero 36 
when the corresponding TKIP temporal key is initialized or refreshed. 37 

4. The WEP IV format carries the least significant 16 bits of the 48-bit TSC, as defined by the TKIP 38 
mixing function phase 2 step 3. The remainder of the TSC is carried in the EIV. 39 

5. A receiver shall maintain a separate set of TKIP replay windows for each MAC address it receives 40 
TKIP traffic from. The receiver initializes the replay window whenever it resets the temporal key 41 
for a peer. 42 

Informative Note: The per-MAC address condition in 5 is needed to accommodate multicast/broadcast keys in the 43 
IBSS case. 44 
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6. A receiver shall delay advancing a TKIP replay window until an MSDU passes the MIC check, to 1 
prevent attackers from injecting MPDUs with valid ICVs and IVs but invalid MICs. 2 

7. In order to accommodate burst ACK, the TKIP receiver shall check that the received TSC (48 bit 3 
counter) is no smaller than 15 less than the greatest TKIP replay window value for the MPDU’s 4 
temporal key. When combined with the prohibition on correctly decrypting more than one MPDU 5 
under a given <temporal key, IV> pair, this provides replay protection and accommodates frames 6 
that may be delayed due to message class priority values, with a window size of 16. 7 

 Note: This works because if an attacker modifies the IV, then this alters the encryption key and hence both 8 
the ICV and MIC will ordinarily decrypt incorrectly, causing the received MPDU to be dropped. 9 

8.3.3  Wireless Robust Authenticated Protocol (WRAP) 10 

A cipher suite based on the Advanced Encryption Standard (AES) and Offset Codebook (OCB) mode has 11 
been adopted. This cipher suite is called Wireless Robust Authenticated Protocol (WRAP) privacy, and this 12 
clause defines it. Support for this protocol is optional. 13 

8.3.3.1  WRAP overview 14 

WRAP privacy consists of three parts: a key derivation procedure, an encapsulation procedure, and a 15 
decapsulation procedure. It is based on 128-bit AES in OCB mode. 16 

a) The encapsulation procedure. Once the key has been derived and its associated state initialized, the 17 
IEEE 802.11 MAC uses the WRAP encapsulation algorithm with the key and the state to protect 18 
all unicast MSDUs it sends to an associated station. 19 

b) The decapsulation procedure. Similarly, once the key has been derived and associated state 20 
initialized, the IEEE 802.11 MAC uses the WRAP decapsulation algorithm with the receive key 21 
and state to decapsulate all unicast MSDUs received from an associated station. Once the key is 22 
established, the MAC shall discard any MSDUs received over the association that are unprotected 23 
by the encapsulation algorithm. 24 

IEEE 802.1X may also assign a broadcast/multicast key. The implementation uses this key as configured, 25 
without derivation. The MAC utilizes the broadcast/multicast key to protect all broadcast/multicast MSDUs 26 
it sends, and discards any broadcast/multicast MSDUs received that are not protected by this key. 27 

Informative Note 1. The WRAP privacy protocol requires IEEE 802.1X authentication and key management. 28 

Informative Note 2.The quality of protection any key offers with any cryptographic algorithm degrades 29 
through key usage. It is impossible to estimate when the protection a key affords has been exhausted without 30 
counting the number of blocks protected. In order to avoid maintaining a history of all MSDUs used with 31 
every key, this means that a fresh, never-used-before key is required whenever a new “session” begins, so 32 
that keys cannot be used independently of some notion of a session. Similarly, the replay protection counter 33 
requires that peers synchronize a fresh key whenever they reinitialize the replay state. 34 

Informative Note 3. The WRAP privacy protocol architecturally lies above the IEEE 802.11 retry function. 35 
This is required since an MSDU may be accepted by the local IEEE 802.11 implementation but its 36 
acknowledgement lost in transit to the peer. If the WRAP privacy protocol were to lie below the IEEE 802.11 37 
MAC retry function, then it would be impossible to recover from this state, as the replay protection function 38 
would discard all further retries. 39 

AES is defined by FIPS Standard 197. Annex G defines OCB Mode. 40 

8.3.3.1.1  WRAP encapsulation 41 

The following steps encapsulate MSDU plaintext data: 42 
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a) Select the appropriate context based on the MSDU; 1 

b) Increment block count and the appropriate replay counter, based on the MSDU service class; 2 

c) Construct the Replay-Counter field of the final WRAP-protected MSDU payload; 3 

d) Construct the OCB nonce using the Replay-Counter, MSDU service class, and source MAC 4 
address; 5 

e) Construct an associated data block from the destination MAC address; 6 

f) AES-OCB encrypt the MSDU and associated data; 7 

g) Construct the MSDU payload from the replay counter, OCB encrypted data, and the OCB tag. 8 

8.3.3.1.2  WRAP decapsulation 9 

The following steps decapsulate data an MSDU received over a protected association or broadcast/multicast 10 
channel: 11 

a) Select the appropriate context based on the received MSDU; 12 

b) perform some basic sanity checks on the packet (See 8.3.3.4.8); 13 

c) construct the OCB nonce using the Replay-Counter, QoS Traffic Class, and the source and 14 
destination MAC addresses from the received MSDU; 15 

d) using the constructed nonce and temporal key from the selected context, WRAP decrypt the 16 
MSDU data; 17 

e) If the MSDU is unicast, extract the sequence number from the MSDU Replay-Counter field 18 
and verify the MSDU is not a replay. 19 

Note. It is infeasible to provide replay protection for multicast/broadcast MSDUs using symmetric key 20 
techniques, and asymmetric key techniques are too computationally expensive to employ for datagram traffic. 21 

8.3.3.2  WRAP MSDU format 22 

The WRAP privacy method encapsulates the MSDU payload. Figure 20 shows the encapsulated MSDU 23 
when using WRAP privacy. 24 

The data overhead of the WRAP privacy algorithm is 12 octets. This includes a 28-bit replay counter, the 25 
single KeyID octet inherited from WEP, and a 64-bit Message Integrity Code (MIC) used to detect 26 
forgeries. 27 

 28 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  49

 

MSDU Data 
(PDU) 
>=1 

MIC 
8 

Note: The encipherment process has expanded the original MSDU by 12 Octets, 4 for the replay counter field, 
and 8 for the Message Integrity Check (MIC). The MIC is calculated over the Data fields only. 

Encrypted (Note) 

Replay 
Counter 

4 

KeyID 
2 bits 

Replay Sequence No 
Reserved 
2 bits 

 1 

Figure 20 - Construction of Expanded WRAP MSDU 2 

The WRAP privacy protocol is invisible to entities outside the IEEE 802.11 MAC data path. 3 

Note: The AES-OCB-protected MSDU payload may span MPDUs. 4 

8.3.3.3  WRAP state 5 

WRAP privacy uses a MIB array called the dot11WrapKeyMappings. This support zero, one, or two entries 6 
for each MAC address pair with which the STA maintains secure associations. The size of the 7 
dot11WrapKeyMappings array is implementation-specific. A global MIB variable 8 
dot11WrapKeyMappingLength indicates the number of entries in the array. 9 

Each entry of the dot11WrapKeyMappings groups together the following state: 10 

1. A dot11WrapReceiveAddress and a dot11WrapTransmitAddress, indicating that this entry applies 11 
to all MSDUs being sent between this pair of addresses; 12 

2. A dot11WrapKeyID, indicating the WEP KeyID into which this entry maps; 13 

3. A 128-bit key called the dot11AESOCBTemporalKey, referred to informally as the temporal key. 14 
This is the derived key as specified in 8.3.1.3.4.1 for unicast, and the unaltered temporal key for 15 
broadcast/multicast. Both keys shall be configured by IEEE 802.1X. 16 

4. A set of 28-bit counters called the dot11WrapTrafficClassNSequenceCounter, for constructing the 17 
next OCB nonce. N ranges from 0 to15, with one traffic class defined for each QoS service class. 18 
When QoS is not used, only dot11WrapTrafficClass0SequenceCounter is used. 19 

5. A 48-bit counter dot11WrapBlocksSent, counting the number of 128-bit blocks protected by the 20 
present temporal key; 21 

6. A set of 28-bit replay windows called the dott11WrapTrafficClassNReplayWindow, for detecting 22 
replays. N ranges from 0 to15. When QoS is not used, only 23 
dot11WrapTrafficClasse0ReplayWindow is used. 24 

7. A boolean flag called dot11WrapEnableTransmit, to indicate when the temporal key and MIC 25 
send key can be used for transmitting MSDUs; 26 
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8. A boolean flag called dot11WrapEnableReceive, to indicate when the temporal key and MIC 1 
receive key can be used for receiving MSDUs. 2 

9. a 32-bit counter dot11WrapFormatErrors, to indicate the number of MSDUs received with an 3 
invalid format, initialized to zero; 4 

10. a 32-bit counter dot11WrapReplays, to indicate the number of received unicast fragments 5 
discarded by the replay mechanism, initialized to zero; 6 

11. a 32-bit counter dot11WrapDecryptErrors, to indicate the number of received fragments discarded 7 
by the OCB decryption mechanism, initialized to zero; and 8 

12. a 48-bit counter dot11WrapRecvdBlocks, to track the total number of protected blocks received. 9 

Informative Note 1: A broadcast/multicast entry does not utilize the replay window. This is because it is 10 
impossible to detect broadcast/multicast replays using symmetric key techniques. In particular, any party 11 
holding the broadcast/multicast key can masquerade as any other member of the group, so can intrude on 12 
another’s sequence space without detection. 13 

Informative Note 2: As an optimization, implementations may compute and maintain the AES-OCB key 14 
schedule rather than maintain the temporal key. 15 

8.3.3.4  WRAP procedures 16 

8.3.3.4.1  Transmit context selection 17 

To encapsulate data, the transmitter first checks whether the MSDU is unicast or multicast/broadcast. It 18 
selects the correct transmit context by mapping the destination address to an entry in the 19 
dot11WrapKeyMappings. If an appropriate context exists, a conformant implementation shall use the entry 20 
to protect any MSDU it sends. 21 

8.3.3.4.2  Incrementing the transmit block count and replay counter 22 

To encapsulate data, the transmitter computes the total number of blocks to be protected in the MSDU. This 23 
is defined as 24 

m = (# MSDU data octets)/AES-Block-Size, 25 

where a means, as before, to round a up to the nearest integer, and AES-Block-Size = 16 (octets).  26 

If adding the number of blocks m would cause the context’s value of dot11WrapBlocksSent to wrap—i.e., if   27 
m + dot11WrapBlocksSent > 248—then the cryptographic protection afforded by the key are considered 28 
exhausted, and it is a protocol error to use the key any further. In this case, the encapsulation algorithm shall 29 
discard all transmit datagrams until the key is replaced with a new one. 30 

Otherwise, from the selected context and the MSDU QoS traffic class, the implementation selects 31 
appropriate 28-bit per-service-class replay counter. If QoS traffic classes are not in use, there is only one 32 
replay counter for the entire association. 33 

If the value of the selected replay counter is 228–2 = 268435454 (or greater), then another valid nonce 34 
cannot be constructed. That is, reusing this replay counter means that more than one MSDU would be 35 
protected by the same <key, nonce> pair, voiding the security guarantees. Once again, the sender shall not 36 
transmit another MSDU on this association or broadcast/multicast channel until the key is replaced, and the 37 
encapsulation algorithm shall discard all datagrams until the key is replaced by a new one. 38 
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Otherwise, the value of the selected replay counter is less than 268435454, and it is still feasible to 1 
construct another valid nonce. The implementation adds m to dot11AESOCBBlocksSent and 2 to the replay 2 
counter, and proceeds to the next step. 3 

Note: The value 248 was selected by the following reasoning. The proof of OCB mode security indicates the 4 
insecurity of the construction increases as O(s2/2128), where s is the total number of blocks protected. If A is 5 
the probability that an adversary can break the underlying block cipher AES, then the choice of s = 248 6 
bounds chances of breaking AES-OCB mode to no more than approximately A + (248)2/2128 = A + 1/232; that 7 
is, using a single key in OCB mode over 248 blocks does not greatly increase the adversary’s chances over 8 
breaking a single block encrypted under AES. On the other hand, the replay counter is transmitted with the 9 
encrypted data, and it is necessary to minimize the number of bits transmitted through the wireless medium; 10 
further, it is desirable to use an odd number of bytes for the sequence number, so the existing WEP KeyID 11 
byte could be maintained to simplify hardware implementations. This limited the choices to 24-bits, 28-bits, 12 
40-bits, 56-bits, etc. 24-bits is too small, but security decays too much with 56-bits. While 40-bits can be 13 
selected, it requires the counter to be interspersed in the replay sequence number field as the KeyID bits are 14 
in fixed bit positions 30 and 31. However, if we expand from 24-bits to 28-bits, it allows us to maintain a 32-15 
bit replay sequence number field and enough blocks to be processes with a reasonable lifespan for the key . 16 

8.3.3.4.3  Encoding the transmit Replay-Counter 17 

The WRAP privacy algorithm Replay Counter is a four-octet field. It is used to convey the MSDU sequence 18 
number to the peer. The Replay Counter is utilized to construct the nonce and to detect replayed MSDUs. 19 

The replay counter computed in 8.3.3.4.2 is encoded into the Replay-Counter field. This is accomplished by 20 
first encoding the number as a 28-bit big-Endian integer BEI. Next the three most significant bytes of BEI 21 
are encoded into the first three octets of the Replay-Counter field. Following these three octets the 22 
remaining 4-bits is concatenated with the 2 KeyID bits. Symbolically, 23 

BEI ← Big-Endian(replay counter ⋅ 16) 24 
Partition BEI into a sequence of 4 octets: BEI = BEI1 || BEI2 || BEI3 || BEI4, where 25 
B EI4 = BEIbit25 || BEIbit26 || BEIbit27 || BEIbit28 || 0

4KeyID ← 068
  || keyidbit1 || keyidbit2 26 

Replay-Counter ← BEI1 || BEI2 || BEI3 || KeyID 27 

This format matches the WEP IV field, with the exception of the use of the first nibble in the KeyID octet.  28 

8.3.3.4.4  Construct the OCB nonce 29 

This algorithm works for both transmit and receive. OCB mode requires a unique nonce be used for each 30 
message it encrypts for its security guarantees to be valid. Using the just-created Replay-Counter from 31 
clause 8.3.3.4.3, the implementation shall construct the OCB nonce as the concatenation of (a) the sequence 32 
number encoded as a big-Endian value, i.e., with its most significant bit first and least significant bit last, (b) 33 
its QoS traffic class, (c) the MSDU source MAC address, and (d) the MSDU destination MAC address: 34 

nonce ← Replay Counter || QoS-Traffic-Class || Source-MAC-Address  || Destination-MAC-Address 35 

If QoS traffic classes are not in use, the QoS-Traffic-Class value shall be 04, i.e., 4 bits of zero. The Source-36 
MAC-Address, Destination-MAC-Address, and QoS-Traffic-Class shall be encoded in the nonce in the same 37 
octet order as in their MSDU encoding. This nonce construction guarantees nonce unicity of these values. 38 
Notice Source-MAC-Address may differ from the IEEE 802.11 transmit address. Similarly, the Destination-39 
MAC-Address may differ from the IEEE 802.11 receiver address. 40 

Note. It is feasible for an IEEE 802.11 implementation to construct a duplicate nonce by using the wrong 41 
station’s MAC address as the source or destination MAC address, but such a construction is non-conformant. 42 
This can be a security problem for broadcast/multicast. If a deployment experiences a rash of duplicate 43 
nonces for broadcast multicast, it may indicates either a non-conformant implementation, a “traitor” within 44 
the BSS—i.e., a party intentionally misbehaving—or a compromise of the BSS broadcast/multicast key. 45 
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8.3.3.4.5  Protect the transmit MSDU 1 

The implementation shall use the WRAP temporal key TK constructed in 8.6 and the nonce constructed in 2 
8.3.3.4.4 to OCB encrypt the plaintext MSDU data. This results in two outputs: 3 

a) An OCB-ciphertext string. This string contains the same number of octets as the MSDU 4 
plaintext data; and 5 

b) A 64-bit OCB-tag. 6 

Symbolically, 7 

OCB-ciphertext || OCB-tag  ← OCB-Encrypt(TK, nonce, MSDU-data) 8 

where OCB-Encrypt(A, B, C) denotes encrypting its third parameter C under key A using nonce B. 9 

8.3.3.4.6  Construct the MSDU transmit payload 10 

Finally, all the elements are assembled in the final MSDU payload. The WRAP privacy-protected MSDU 11 
payload consists of the concatenation of the Relay-Counter field (8.3.3.4.3), the OCB-ciphertext, and the 12 
OCB-tag (8.3.3.4.5): 13 

MSDU-Data ← Replay-Counter || OCB-ciphertext || OCB-tag. 14 

8.3.3.4.7  Receive context selection 15 

The recipient shall select the appropriate context for the received MSDU based on the Transmit and 16 
Receive MAC addresses and the KeyID bits. If the Receive address is broadcast/multicast, then the selected 17 
context becomes the broadcast context. If not, the receiver verifies there is a unicast context for the frame. If 18 
the selected context is for the WRAP privacy algorithm, then the receiver continues with the AES-based 19 
privacy decapsulation algorithm. 20 

If the WRAP privacy algorithm is utilized by an association, the receiver must treat all MSDUs as 21 
protected. Without this provision, an attacker can forge a valid message by simply sending a clear text 22 
message. Hence all implementations must maintain some state indicating whether WRAP privacy protection 23 
should be applied to received MSDUs, whether or not the WEP bit from the MAC header is asserted, and 24 
whether or not the KeyID bits are actually zero. 25 

8.3.3.4.8  Receive sanity checks 26 

If an applicable AES context is present, the receiver shall discard the received MSDU if it does not consist 27 
of at least 15 octets and increment the context’s dot11WrapFormatErrors counter. This includes 3 octets of 28 
LLC header, and 12 octets of AES-based protocol overhead octets. 29 

A second check is the total number of blocks. The implementation computes the total number of blocks 30 
protected in the MSDU. This is defined as 31 

m = (# MSDU data octets – 12)/AES-Block-Size, 32 

where a means to round a up to the nearest integer, and AES-Block-Size = 16.. The 12 is removed to 33 
account for the MSDU Replay Counter field and the OCB-tag field. 34 

If adding the number of blocks m will cause the value of dot11WrapRecvdBlocks from the context selected 35 
in 8.3.1.3.4.3 to wrap—i.e., if   m + dot11WrapRecvdBlocks > 248—then the cryptographic protection 36 
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afforded by the key are considered exhausted, and it is a protocol error to use the key any further. The 1 
receiver shall discard the MSDU and increment the context’s dot11WrapSpentKeyErrors counter. 2 

8.3.3.4.9  Decrypting the MSDU data 3 

Use the nonce constructed in 8.3.3.4.4 and the AES key from the context selected in 8.3.3.4.7 to OCB 4 
decrypt the received MSDU. By definition, this consists of 5 

data-to-decrypt ← MSDU-ciphertext || OCB-tag. 6 

The OCB decryption algorithm will result in two one of outputs: 7 

a) A verification of the tag, and the decrypted plaintext; 8 

b) Failure, because the decryption algorithm detected a change in the underlying data.  9 

If the OCB decryption reports failure, the receiver shall increment the context’s 802dot11AesDecryptErrors 10 
counter, and discard the MSDU. 11 

8.3.3.4.10  Unicast replay verification 12 

If the received MSDU was unicast, the receiver also determines whether it is fresh or represents a replay. 13 
The receiver shall skip this step for broadcast/multicast MSDUs. 14 

The MSDU sequence number is needed to provide replay protection. The little-Endian encoding of the 15 
MSDU sequence number can be extracted from the Replay-Counter field by dropping the last four bits of 16 
the Key-ID octet: 17 

if Replay-Counter = RC1 || RC2 || RC3 || RC4 then 18 
Big-Endian(SeqNum) ← RC1 || RC2 || RC3 || (RC4 ∧ 1404) 19 

where “∧” denotes bit-wise AND. To determine whether a unicast represents a replay, the receiver shall test 20 
whether the MSDU  replay counter SeqNum extracted from the MSDU Replay Counter field is a fresh 21 
value. It is fresh if the pair <QoS-Service-Class, SeqNum> has never been received in a valid MSDU for the 22 
context’s key, and is declared a replay otherwise. If the MSDU’s sequence number is a replay, the receiver 23 
shall discard the MSDU, increments the dot11WrapReplays counter, and halts the decapsulation. Note that 24 
the AES transmit encapsulation implies that MSDUs sent from the STA to the AP always use even values 25 
for the sequence number, and MSDUs sent from the AP to the STA always use odd values for the sequence 26 
number. Hence, the sequence number checking at an AP shall verify that the constructed SeqNum value is 27 
even, and at the STA that the constructed SeqNum value is odd; the implementation shall increment the 28 
dot11WrapReplays counter and halt the decapsulation of this check fails. The IEEE 802.11 implementation 29 
may use any suitable technique to guarantee that the pair <QoS-Traffic-Class, SeqNum> is fresh—e.g., it 30 
might maintain a sliding replay window, or it can maintain a list of all MSDU sequence numbers correctly 31 
received, etc. 32 

8.3.3.4.11  Completing reception 33 

If the MSDU has not been discarded due to the processing described above, then the receiver must update 34 
the 802dot11RecvdBlocks counter by adding to it the value b computed in 8.3.3.4.2, to indicate the number 35 
of blocks decapsulated, and the decapsulation completed successfully. 36 

8.3.4  The Counter-Mode/CBC-MAC protocol (CCMP) 37 

A protocol based on the Advanced Encryption Standard (AES) and Counter-Mode/CBC-MAC (CCM) 38 
mode has been adopted. This protocol is called the Counter-Mode/CBC-MAC Protocol (CCMP), and this 39 
clause defines it. Implementation of this protocol is mandatory for RSN compliance. 40 
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8.3.4.1  CCMP overview 1 

The CCMP protocol is based on AES using the CCM mode of operation. The CCM mode combines 2 
Counter (CTR) mode privacy and Cipher Block Chaining Message Authentication Code (CBC-MAC) 3 
authentication. These modes have been used and studied for a long time, have well-understood 4 
cryptographic properties, and no known patent encumbrances. They provide good security and performance 5 
in both hardware or software. 6 

CCM uses the same temporal key for both CTR mode and the CBC-MAC. Using a key for more than one 7 
function usually introduces a weakness. Jakob Jonsson has proved that this cannot occur in this particular 8 
case, as the construction of different IVs for CTR-mode and CBC-MAC eliminates the problems usually 9 
associated with this. Indeed, all the encryption IVs are different, and they are different from the 10 
authentication initial block. If the block cipher behaves like a random permutation, then the outputs are 11 
independent of each other, up to the insignificant limitation that they are all different. The only places where 12 
the inputs to the block cipher can overlap is an overlap between an intermediate value in the CBC-MAC and 13 
one of the other encryptions. As all the intermediate values of the CBC-MAC computation are essentially 14 
random (because the block cipher behaves like a random permutation) the probability of such a collision is 15 
very small. Even if there is a collision, these values only affect MIC, which is encrypted so that an attacker 16 
cannot deduce any information, or detect any collision.  17 

CCM assumes a fresh temporal key for every session. Reuse of a temporal key and packet number voids all 18 
security guarantees. 19 

Annex F provides test vectors for CCM mode. 20 

8.3.4.1.1  CCMP encapsulation 21 

Figure 21 depicts the CCMP encapsulation process. CCMP encapsulates a plaintext MPDU using the 22 
following steps: 23 

 24 
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Figure 21—CCMP encapsulation block diagram 3 

1. It first increments the Packet Number (PN), to obtain a fresh PN for each MPDU. 4 

2. It encodes the fresh PN into the MPDU. 5 

3. It constructs the CCM initial block from the PN, the MPDU TA, and from the MPDU data length 6 
(Dlen). 7 

4. With the initial block constructed, it MICs the MPDU using AES with CBC-MAC. 8 

5. It constructs the CCM CTR-mode counter from the PN and the MPDU TA. 9 

6. Finally, it encrypts the MPDU data and MIC using AES in CTR-mode. 10 

8.3.4.1.2  CCMP decapsulation 11 

Figure 22 depicts the CCMP decapsulation process. CCMP decapsulates a plaintext MPDU using the 12 
following steps: 13 

 14 
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Figure 22—CCMP decapsulation block diagram 2 

1. It first decodes the PN and Dlen. 3 

Informative Note: The PN can be removed from the MPDU at this or any other step. 4 

Informative Note: Dlen must be at least eight (16) octets, to account for the MIC and the encoded PN. 5 

2. It applies replay filtering. If the PN indicates out-of-sequence arrival, the MPDU is discarded as a 6 
replay. 7 

3. The CCM CTR-mode counter is constructed from the TA and PN. 8 

4. The counter and Temporal key are used to CTR-mode decrypt the MPDU data. Note this operation 9 
is the same as CTR-mode encryption. 10 

5. It constructs the initial block used to form the CCM CBC-MAC IV from the PN, TA, and Dlen. 11 

Informative Note: Dlen must be decremented by sixteen (16) octets, as the MIC and the encoded PN are not 12 
considered part of the plaintext data being protected. 13 

6. It uses the initial block and temporal key to re-compute a MIC′ of the decrypted MPDU, using 14 
AES with CBC-MAC. 15 

7. It finally compares the MIC′ it computed with the received MIC. If the two do not match, the 16 
MPDU is discarded as a forgery. 17 

8.3.4.2  CCMP MPDU format 18 

Figure 23 depicts the MPDU when using CCMP. 19 
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Figure 23—Expanded CCMP MPDU 3 

The IV/KeyID and Extended IV fields together are called the encoded PN. This is a slight abuse of 4 
language, since the encoding includes the Key Id as well as the PN. 5 

The CCMP formats are invisible to entities outside the IEEE 802.11 MAC data path.  6 

Bit 5 of the KeyID octet signals an Extended Packet number field of 6 octets. For standard length Packet 7 
number/ IV fields this bit shall be set to zero (0), for extended packet number field the bit shall be set to 8 
one. The Extended IV bit (bit 5) is always set for CCMP. 9 

The reserved bits shall be set to zero (0). 10 

8.3.4.3  CCMP state 11 

CCMP privacy uses a MIB array called the dot11CcmpKeyMappings. This supports zero, one, or two 12 
entries for each MAC address pair with which the STA maintains secure associations. The size of the 13 
dot11CcmpKeyMappings array is implementation-specific. A global MIB variable 14 
dot11CcmpKeyMappingLength indicates the number of entries in the array. 15 

Each entry of the dot11CcmpKeyMappings groups together the following state: 16 

1. A dot11CcmpReceiveAddress and a dot11CcmpTransmitAddress, indicating that this entry applies 17 
to all MPDUs being sent between this pair of addresses.  18 

2. A dot11CcmpKeyID, indicating the KeyID into which this entry maps. 19 

3. A 128-bit key called the dot11CcmpTemporalKey, referred to informally as the temporal key. This 20 
is the TK1 subfield portion of the Pairwise Transient Key as defined in 8.5.1.2, or the TK1 21 
subfield of the Group Transient Key as defined in 8.5.1.3. This key is often called the temporal 22 
key. 23 

4. A set of 48-bit counters called the dot11CcmpTrafficClassNPacketNumber, for constructing the 24 
next initial block. N ranges from 0 to 15, with one traffic class defined for each QoS service class. 25 
When QoS is not used, only dot11CcmpTrafficClass0PacketNumber is used. 26 

5. A set of 48-bit replay windows called the dott11CcmpTrafficClassNReplayWindow, for detecting 27 
replays. N ranges from 0 to15. When QoS is not used, only 28 
dot11CcmpTrafficClasse0ReplayWindow is used. 29 
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6. A boolean flag called dot11CcmpEnableTransmit, to indicate when the temporal key can be used 1 
for transmitting MPDUs. 2 

7. A boolean flag called dot11CcmpEnableReceive, to indicate when the temporal key can be used 3 
for receiving MPDUs. 4 

8. A 32-bit counter dot11CcmpFormatErrors, to indicate the number of MPDUs received with an 5 
invalid format, initialized to zero. 6 

9. A 32-bit counter dot11CcmpReplays, to indicate the number of received unicast MPDUs discarded 7 
by the replay mechanism, initialized to zero. 8 

10. A 32-bit counter dot11CcmpDecryptErrors, to indicate the number of received MPDUs discarded 9 
by the CCMP decryption mechanism, initialized to zero. 10 

11. A 48-bit counter dot11CcmpRecvdMPDU, to track the total number of protected MPDUs received. 11 

Informative Note 1: A broadcast/multicast entry does not utilize the replay window. This is because it is 12 
impossible to detect broadcast/multicast replays using symmetric key techniques. In particular, any party 13 
holding the broadcast/multicast key can masquerade as any other member of the group, so can intrude on 14 
another’s sequence space without detection. 15 

Informative Note 2: As an optimization, implementations may compute and maintain the AES-CCM key 16 
schedule rather than maintain the temporal key. 17 

8.3.4.4  CCMP procedures 18 

8.3.4.4.1  Increment the PN 19 

This procedure increments the Packet Number (PN) by 1: 20 

PN ← PN + 1 21 

such that the resulting PN < 248. 22 

Informative Note: When the PN space is exhausted, the choices available to an implementation are to replace 23 
the temporal key with a new one, to end communications, or to send further traffic unprotected. Reuse of any 24 
PN value compromises already sent traffic. The PN is large enough, however, that PN space exhaustion 25 
should not be an issue. 26 

8.3.4.4.2  CCM initial block construction 27 

Informative Note: CCM is a big-Endian algorithm. This section therefore explicitly represents data structures 28 
as big-Endian quantities instead of the conventions of 7.1.1. 29 

The CCM initial block shall have the format 30 

Bit 
Number 
within 
field 

B7 B0 B103  B0 B7 B0 

Octet 
Index 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Contents Flag Nonce Dlen 

Figure 24—CCM Initial Block Format 1 

Here 2 

• The Flags field occupies bits 127-120 of the CCM Initial Block. Flags is a bit field assuming the 3 
value 0x59 (hex). The bits shall be interpreted as follows: 4 

o 7: reserved: value = 0 5 

o 6: Include header: value = 1, meaning yes 6 

o 3-5: MIC size: value = 3, meaning use an 8-octet MIC 7 

o 0-2: Dlen size: value = 1, meaning use a 2-octet Dlen 8 

bit:                B7  B6 B5     B3  B2     B0 9 

0 1 0  1  1 0   0   1 

Figure 25—CCM Initial Block: Flag Field 10 

• The Nonce field occupies bits 119-16 of the CCM Initial Block. The Nonce has an internal 11 
structure QoS-TC || A2 || PN, where 12 

o QoS-TC occupies bits 103-96 of the Nonce (bits 119-112 of the Initial Block). This field 13 
is reserved for the QoS traffic class and shall be set to the fixed value 0 (0x00 hex). 14 

o MPDU address A2 occupies bits 95-48 of the Nonce (bits 111-64 of the Initial Block). 15 
This shall be encoded with the octets ordered with A2 octet 0 at octet index 2 and A2 16 
octet 5 at octet index 7. 17 

o PN occupies bits 47-0 of the Nonce (bits 63-16 of the Initial Block). This field shall 18 
encode the MPDU sequence number associated with the temporal key. The octets of PN 19 
shall be ordered such that PN0 is at octet index 13 and PN5 is at octet index 8. 20 

 21 

                   22 

Octet 
Index 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Content 0x00 A2 PN 

Figure 26—CCM Initial Block: Nonce Field 23 
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• The Dlen field occupies bits 15-0 of the CCM Initial Block. Dlen represents the length of the 1 
plaintext MPDU length in octets. This shall be encoded using the reverse bit ordering from the 2 
usual conventions from 7.1.1, with the Dlen msb first and the Dlen lsb last. 3 

Informative Note: Dlen is the length of the data proper, and does not include the length of the MIC, nor of 4 
the encoded PN. 5 

Informative Note: The initial block construction was chosen to permit the same temporal key to be used for both 6 
encryption and the MICing operation, and to protect traffic in both directions over an IEEE 802.11 link. 7 

8.3.4.4.3  CCMP MIC computation 8 

CCMP uses AES in the CBC-MAC mode to compute a MIC for the MPDU. 9 

The input to this algorithm is 10 

1. The plaintext MPDU. 11 

2. The Initial Block for this MPDU, as constructed in 8.3.4.4.2. 12 

3. The temporal key. 8.6.5 defines this key for pairwise communication, and 8.6.6 defines this key for 13 
group communications. 14 

The output of the algorithm is a MIC value. This can be appended to the MPDU on transmit, and compared 15 
with a received MIC at the receiver. 16 

The algorithm first encrypts the Initial Block to produce the CBC mode IV. Next it computes the CBC-17 
MAC over the IEEE 802.11 header length (Hlen), selected parts of the IEEE 802.11 MPDU header, and the 18 
plaintext MDPU data. 19 

The algorithm represents the header length Hlen as a big-Endian (i.e., msb first) unsigned integer value. The 20 
algorithms decrements the genuine Hlen by 2 (length of the omitted duration field) prior to encoding. 21 

When the number of octets in the Hlen together with the parts of the IEEE 802.11 header protected is not a 22 
multiple of the AES block size, the header data shall be zero padded to a multiple of the AES block size (16 23 
octets). This padding is used only by the algorithm, and is not included in the transmitted MPDU. 24 

Informative Example. When A3 is not present, for instance, the total data being protected by the MIC is 18 25 
octets. In this case 14 zero octets are appended to the header data for the MIC computation and then 26 
discarded.  27 

The portions of the header included in the computation include 28 

• FC – MPDU Frame Control field, with Retry bit masked to zero. 29 

• A1 – MDPU Address 1. 30 

• A2 – MPDU Address 2.. 31 

• A3 – MPDU Address 3, if present. 32 

• A4 – MPDU Address, if present. 33 

• SC – MPDU Sequence Control. 34 

• QC – The Quality of Service Control, if present. 35 
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Informative Note: The algorithm skips the header Duration field, because it value is mutable, i.e., it can change 1 
due to normal IEEE 802.11 operation. Similarly, the computation masks the FC Retry bit to zero, as the value of 2 
this bit is mutable. 3 

Informative Note: In spite of being mutable, the MIC computation includes the Sequence Control field. This is 4 
CCMP’s means of defending against fragmentation attacks. Fragmentation attacks against the protocol are always 5 
possible, given that CCMP protects MPDUs instead of MSDUs. 6 

When the MPDU plaintext data is not a multiple of the AES block size, zero padding shall be added to 7 
extend the plaintext data length to be the first multiple of the AES block size larger than the real length. 8 
This padding is present only for the computation, and shall not be part of the transmitted data. 9 

Informative Examples. If the plaintext data field consists of 96 octets, no padding is require as 96 = 6⋅16. If the 10 
plaintext data field length consists of 100 octets, then 12 octets of zero padding are appended to the plaintext data 11 
for the MIC computation and then discarded once it completes.  12 

The CBC-MAC computation produces in a 128-bit tag value. CCMP truncates the tag to its most significant 13 
64 bits (bits 127-64) to form the MIC. Figure 27 depicts the entire process for an example MPDU with an 14 
arbitrarily chosen payload length of 58 octets. 15 

16 octet (or fewer)
data field

xyzKey: AES(K) AES block cipher,
using 128 bit key K

MIC
(8 Octets)

FC Dur A1 A2 A3 SC A4 QC RSN Header
(8 Octets)

MIC_IV

AES(K)

2 2 2 26 6 6 6 8

Plaintext Block(4)
(10 Octects)

1 - 2312

MIC_HEADER1 MIC_HEADER2 Plaintext Block(1)
(16 Octects)
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(16 Octects)

zeroes

Pad n zeroes to most signifiant end
of field such that:
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*Notes

2:

1:
Bitwise XOR

*Note 1

16 16 16 10

HLEN

QoS_TC
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DLEN
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AES(K) AES(K)
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(58 Octects)

AES(K)

Plaintext Block(3)
(16 Octects)

AES(K)

Zero
Padding
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Plaintext Block(4)
(10 Octects)

Zero
Padding

Padded Plaintext Block(4)
(16 Octects)

AES(K) AES(K)
CBC-MAC
(16 Octets

*Note 2

Discard most significant 8 octets

16 
 17 

Figure 27—CCMP MIC computation block diagram 18 

The construction of the MIC_IV referred to in Figure 27 is summarized below in Figure 28. 19 
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QoS_TC from
QoS_Control

Bytes:

Field:

0 HDAT MIC_LEN DLEN

1 1 3 3

Bits:

Field:
0 1 0 1 1 0 0 1Contents:

0x59

Length of data
part not

including
padding

PN5 PN4 PN3 PN2 PN1 PN0

Payload
RSN Header

DLEN

Byte Significance: octect 0

Byte within MIC_IV:

msb msblsb lsb

151413871

octet 5

20

26611

Flag QoS_TC A2 PN DLEN

RSN header field  from
payloadContents: A2 field from header

PN0 DataPN1  rsvd Key
ID PN2 PN3 PN4 PN5 MICPacket: QoS_

ControlA4SCA3A2A1DurFC

lastfirst

Byte significance:
least significant  first
most significant first

Transmit
Order:

 1 
Figure 28—MIC IV Construction 2 

The second block to be included in the MIC computation is formed from fields within the MPDU header.  3 
The construction of this block is summarized in Figure 29. 4 

Bytes: 6622

Field:

A2 field from
header

A1 field from
header

FC field from
header

HLEN

Set Retry bit = 0
More Data bit = 0
Protected bit = 1

CF-ACK = 0
CF-POLL = 0

PN0 DataPN1  rsvd Key
ID

PN2 PN3 PN4 PN5 MICPacket:

Payload

QoS_
Control

A4SCA3A2A1DurFC

Header

transmit
order :

lastfirst

Length of
muted header

in octets

Byte Significance: msbmsb

Byte within MIC_HEADER1:

octet 5 octet 5octet 0 octet 0

15109430

lsblsb

21

HLEN FC A1 A2

Contents:

Note: HLEN calculated
according to table below:

Byte significance:
least significant  first
most significant first

HLENA4
Present

QoS_Ctl
Present

No

Yes

No
YesNo
No

Yes Yes 30
28
24
22

 5 
Figure 29—MIC HEADER1 Construction 6 

The third block to be included in the MIC computation is formed from fields of the header, if necessary 7 
with padding to bring the block size to 16 octets. The construction of the third MIC generation header block 8 
is summarized in Figure 30. 9 
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26 6 2Bytes:

QoS-CTLA3 A4

Field(A4 Absent, QC Present)

A4 field from header

Packet:

A3 field from header
QoS_CTL
field from
header

Header

And with 0x000F to clear bits 15 through 4

transmit
order :

Byte Significance: octet 0 octet 5

Byte within MIC_HEADER2:

Contents:

151413850

Payload
RSN Header

PN0 DataPN1  rsvd Key
ID

PN2 PN3 PN4 PN5 MICQoS_
Control

A4SCA3A2A1DurFC

lastfirst

Byte significance:
least significant  first
most significant first

PAD 0x000000000000A3

Field(A4 present, QC Present)

Field(A4 present, QC Absent) PAD 0x00A3 A4

Field(A4 Absent, QC Absent) PAD 0x0000000000000000A3

QoS-CTL Note: If A4 is absent then
QoS_CTL moves to bytes 8
through 9. Remaining bytes are
padded with zeroes.

}
6 7

SC

msblsb

SC

SC

SC

SC field from
header

109

octet 0 octet 5

octet 0 octet 5

 1 
Figure 30—MIC HEADER2 Construction 2 

8.3.4.4.4  CCMP MIC verification 3 

On transmit the MIC computed in 8.3.4.4.3 is appended to the plaintext MPDU data. Thus, the MIC 4 
becomes the final 64-bits of plaintext MPDU data. Note that CCMP appends the MIC to the plaintext data 5 
prior to encryption. 6 

To verify the MIC, after decrypting the data, the receiver computes the MIC using the procedure in 7 
8.3.4.4.3 and bit-wise compares the result against the last 64-bits of plaintext MPDU data. If any bits of the 8 
computed MIC differ from those received, it discards the MPDU as a forgery. If all of the bits are identical, 9 
then the receiver interprets the MPDU as genuine, and strips the 64-bit MIC from the end of the MPDU. 10 

8.3.4.4.5  CCM CTR-mode counter construction 11 

Informative Note: CCM is a big-Endian algorithm. This section therefore explicitly represents data structures 12 
as big-Endian quantities instead of the conventions of 7.1.1. 13 

The CCM CTR-mode counter shall have the format 14 

Octet 
Index 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Content: Flags Nonce Ctr 

Figure 31—CCM Counter Format 15 

Here 16 
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• The Flags field occupies bits 127-120 of the counter. Flags represents a bit field assuming the 1 
value 0x01 (hex). The bits shall be interpreted as follows: 2 

o 7: reserved: value = 0 3 

o 6: Include header: value = 0, meaning no 4 

o 3-5: MIC size: value = 0, meaning none 5 

o 0-2: counter size: value = 1, meaning use a 2-octet C field 6 

bit:                B7  B6 B5     B3  B2     B0 7 

0 0 0  0  0 0   0   1 

Figure 32—CCM Counter: Flags Field 8 

• The CCM Counter Nonce format is identical to that for the CCM Initial Block, defined in 9 
8.3.4.4.2. 10 

• Ctr represents the lower 16-bits of the CTR-mode counter, and takes the value of 0x0000. 11 

Informative Note. The counter format permits CTR-mode to be used with MPDU plaintext payloads of up to 12 
(216 – 1)⋅16 + 8 = 1048568 octets in length. 13 

Informative Note: The counter construction was chosen to permit the same temporal key to be used for both 14 
encryption and the MICing operation, and to protect traffic in both directions over an IEEE 802.11 link. 15 

The detailed construction of the CCM counter is described below in Figure 33. 16 

26611

Flag

Bytes:

QoS_TC A2 PN CField:

Reserved
(0)

reserved
(0)

0 L
(1)

1 1 3 3Bits:

Field:

0 0 0 0 0 0 0 1Contents:

A2 field from
header

Counts upwards from C=0x0001
C=0x0000 for MIC block

PN5 PN4 PN3 PN2 PN1 PN0

Packet:

QOS_TC from
QOS_CTL in header.

Substitute with 0x0000
if no QoS_CTL

Byte Significance: octect 0

Byte within CTR_PRELOAD:

msb lsblsb msb

151413871 2

CounterPacket  number from payloadQoS_TC0x01

0

Payload
RSN Header

PN0 DataPN1  rsvd Key
ID PN2 PN3 PN4 PN5 MIC

QoS_
ControlA4SCA3A2A1DurFC

lastfirst

Byte significance:
least significant  first
most significant first

Transmit
Order:

octect 5

 17 
Figure 33—CCM Counter Nonce Construction 18 
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8.3.4.4.6  CCM CTR-mode encryption 1 

CCMP uses AES in Counter mode to encrypt and decrypt the MPDU data and MIC. 2 

The input to this algorithm is 3 

1. The MPDU data field, with MIC appended. On transmission, the data field with MIC is plaintext, 4 
while on reception bother are ciphertext. 5 

2. The Counter for this MPDU, as constructed in 8.3.4.4.5. 6 

3. The temporal key. 8.6.5 defines this key for pairwise communication, and 8.6.6 defines this key for 7 
group communications. 8 

The output of the algorithm is an encrypted MPDU data field on transmit and a decrypted MPDU data field 9 
with MIC on reception. 10 

Figure 27 depicts the encryption process for an example MPDU with an arbitrarily chosen payload length of 11 
58 octets. Figure 35 depicts the decryption process for the same MPDU. 12 

16 octet (or fewer)
data field

xyzKey: AES(K) AES block cipher,
using 128 bit key K

AES(K)

MIC
(8 Octets)

FC Dur A1 A2 A3 SC A4 QC RSN Header
(8 Octets)

Plaintext
(58 Octects)

CTR_PRELOAD(i)

AES(K)

First Octet Transmitted

2 2 2 26 6 6 6 8 8

Plaintext Block(4)
(10 Octects)

1 - 2312

CTR_PRELOAD(2)

AES(K)

CTR_PRELOAD(3)

AES(K)

CTR_PRELOAD(4)

AES(K)

Ciphertext Block(1)
(16 Octects)

Ciphertext Block(2)
(16 Octects)

Ciphertext Block(3)
(16 Octects)

Ciphertext
Block(4)

(10 Octects)

Plaintext Block(1)
(16 Octects)

Plaintext Block(2)
(16 Octects)

Plaintext Block(4)
(10 Octects)

FC Dur A1 A2 A3 SC A4 QC RSN Header
(8 Octets)

CTR_PRELOAD(0)

MiIC Block
(8 Octects)

MiIC Block
(8 Octects)

MIC Ciphertext
Block

(8 Octects)

(16 Octects)

*Note 2

Discard n most significant octets
where 16-n = length of final plaintext
block

Discard 8 most significant octets

*Notes

Plaintext Block(3)
(16 Octects)

2:

1:

Bitwise XOR xyz Encrypted Field

(10 Octects)

*Note 1

( 6 Octects)

16 16 16 10

1 - 2312

13 
Figure 34—CCMP CTR-mode encryption block diagram 14 
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16 octet (or fewer)
data field

xyzKey: AES(K) bitwise XORAES block cipher,
using 128 bit key K

AES(K)

Locally computed MIC
(8 Octets)

FC Dur A1 A2 A3 SC A4 QC
RSN Header

(8 Octets)
Plaintext

(58 Octects)

CTR_PRELOAD(1)

AES(K)

First Octet Transmitted

2 2 2 26 6 6 6 8

Plaintext Block(4)
(10 Octects)

1 - 2312

*Note 1

CTR_PRELOAD(2)

AES(K)

CTR_PRELOAD(3)

AES(K)

CTR_PRELOAD(4)

AES(K)

Plaintext Block(1)
(16 Octects)

Plaintext Block(2)
(16 Octects)

FC Dur A1 A2 A3 SC A4 QC
RSN Header

(8 Octets)

CTR_PRELOAD(0)

MIC
(8 Octects)

*Note 2

Discard most significant n octets
where 16-n = length of final
plaintext block

Discard most significant 8 octets

*Notes

Plaintext Block(3)
(16 Octects)

2:

1:

Ciphertext Block(1)
(16 Octects)

Ciphertext Block(2)
(16 Octects)

Ciphertext Block(3)
(16 Octects)

Ciphertext
Block(4)

(10 Octects)

(10 Octets) (6 Octets)

MIC Ciphertext
Block

(8 Octects)

(8 octets)

xyz Encrypted Field

(8 octets)

MIC Failure?

Compare

16 16 16 10

1 - 2312

 1 
Figure 35—CCMP CTR-mode decryption block diagram 2 

Counter mode operates by encrypting a counter value. The data field is partitioned into contiguous blocks 3 
D1…Dn each of whose length equals the AES block size (16 octets); the final block Dn may be shorter if the 4 
entire data field is not a multiple of the block size. Each Di is then encrypted (decrypted) as 5 

Counter.Ctr ← BigEndian(i); AES_EncryptK(Counter) ⊕ Di 6 

where “⊕” denotes the exclusive OR operation, AES_EncryptK(⋅) denotes AES encryptions of its argument 7 
under the key K, and BigEndian(i) denotes the big-Endian (msb first) encoding of its argument as a 8 
unsigned integer. The key K denotes the temporal key associated with the current security association. 9 

Informative Note: If the final block to be encrypted (decrypted) is not a multiple of the AES block size (16 10 
octets), then the final encrypted counter value is truncated to match the length of the final block; since the 11 
Counter is Big-Endian, the least significant bytes are dropped. In particular, counter mode requires no 12 
padding. 13 

Informative Note: Because an IEEE 802.11 MPDU can convey 0-2304 octets of data, this implies that a 14 
CCMP protected MPDU will convey between 1 and 145 blocks of encrypted data. Thus the value of i above 15 
ranges from 1 to n, where n ≤ 145. 16 

Informative Note: Encrypting the MIC avoids collision attacks on the CBC-MAC. If the block cipher 17 
behaves as a pseudo-random permutation then the key stream is indistinguishable from a random string. This 18 
implies that the attacker gets no information about the CBC-MAC results. The only known avenue of attack 19 
that is left is a differential-style attack, which has no significant chance of success if the block cipher is a 20 
pseudo-random permutation. 21 
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8.3.4.4.7  Encoding the PN 1 

The PN is encoded in the IV/Key ID and Extended IV fields. When the PN is represented according to the 2 
conventions of 7.1.1, bits 0-7 of the PN are encoded as IV0, bits 8-15 as IV1, bits 16-23 as IV2, bits 24-31 3 
as IV3, bits 32-39 as IV4, and bits 40-47 as IV5.  4 

8.3.4.4.8  CCMP replay detection 5 

1. CCM Packet Number (PN) values shall correspond to MPDUs. 6 

2. The PN (48 bit counter) shall be selected from a single pool by each transmitter for each temporal 7 
key. Each transmitter has its own unique counter for each temporal key established. 8 

3. The PN shall be implemented as a 48-bit monotonically incrementing counter, initialized to zero 9 
when the corresponding CCMP temporal key is initialized or refreshed. 10 

4. The CCMP format carries the least significant 16 bits of the 48-bit PN. The remainder of the PN is 11 
carried in the Extended IV. 12 

5. The recipient shall maintain a separate replay window for each IEEE 802.11 Traffic Class, and 13 
shall use the PN recovered from a received frame to detect replayed frames. A replayed frame 14 
occurs when the PN extracted from a received frame is repeated or not greater than the current 15 
Traffic Class replay window value for the frame’s traffic class. The replay window accommodates 16 
frames that may be delayed due to traffic class priority values. 17 

6. A receiver shall maintain a separate set of PN replay windows for each MAC address it receives 18 
CCMP traffic from. The receiver initializes the replay window whenever it resets the temporal key 19 
for a peer. 20 

7. In order to accommodate burst ACK, the CCMP receiver shall check that the received PN (48 bit 21 
counter) is no smaller than 15 less than the greatest CCMP replay window value for the MPDU’s 22 
temporal key. When combined with the prohibition on correctly decrypting more than one MPDU 23 
under a given <temporal key, PN> pair, this provides replay protection and accommodates frames 24 
that may be delayed due to message class priority values, with a window size of 16. 25 

8.4  RSN security association management 26 

8.4.1  Security association life cycle 27 

IEEE 802.11 uses the notion of a security association to describe secure operation. Secure communications 28 
are possible only within the context of a security association, as this is the context providing the state—29 
cryptographic keys, counters, sequence spaces, etc.—needed for correct operation of the IEEE 802.11 30 
cipher suites. 31 

The life cycle of a security association is naturally intertwined with the other IEEE 802.11 mechanisms. A 32 
STA can operate in either an ESS or in an IBSS, and a security association has a distinct life cycle for each. 33 

In an ESS there are two cases: initial contact between the STA and the ESS, and roaming by the STA within 34 
the ESS. A STA and AP establish an initial security association via the following steps: 35 

1. The STA selects an authorized ESS by selecting among APs that advertise an appropriate SSID. 36 

Informative note: Advertising the SSID plays a crucial security function. If the STA does not know the SSID 37 
of some AP, it either must decline communication, or it has to guess the ESS of the AP. When the AP is not 38 
authorized, then the STA might present all of its credentials in an effort to find some that allow it to 39 
authenticate. This can result in unintended identity disclosure of the STA to the unauthorized AP. 40 
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Advertising the SSID also provides an important performance optimization. Without advertisements, if the 1 
AP is indeed authorized, the STA on average must present half its credentials before locating the correct ones 2 
at initial contact. 3 

2. The STA may then use IEEE 802.11 Open System Authentication followed by association to the 4 
chosen AP. Negotiation of security parameters takes place during association. 5 

Informative Note: An attack altering the security parameters will be detected by the key derivation procedure. 6 

Informative Note: IEEE 802.11 Open System Authentication provides no security, but is included to 7 
maintain backward compatibility of the state machine. 8 

3. After the association completes, the STA and AP shall initiate filtering of non-IEEE 802.1X class 9 
3 MPDUs, and the AP’s Authenticator shall initiate IEEE 802.1X authentication. The 10 
authentication will be mutual, as the STA needs assurance that the AP belongs to the authorized 11 
network and is not a rogue. 12 

Informative Note: Any secure network cannot support promiscuous association as in unsecured operation of 13 
IEEE 802.11. A trust relationship must exist between the STA and the target SSID prior to association and 14 
secure operation, in order for the association to be trustworthy. The reason is that an attacker can deploy a 15 
rogue access point just as easily as a legitimate network provider, so some sort of prior enrollment procedure 16 
is necessary to establish credentials between the ESS and the STA. 17 

4. The last step is key exchange. The authentication process creates cryptographic keys shared 18 
between the IEEE 802.1X AS and the STA. The AS distributes these keys to the AP, and the AP 19 
and STA use two key confirmation handshakes, called the 4-way handshake and group key 20 
handshake, to complete security association establishment. The key confirmation handshakes 21 
indicate when the link has been secured by the keys, so is safe to allow normal data traffic. If key 22 
handshakes complete successfully, STAs (including APs) shall terminate the filtering of class 3 23 
MPDUs other than IEEE 802.1X, allowing normal data to flow. 24 

Informative note: The Supplicant of a STA should silently discard IEEE 802.1X messages not received from 25 
the AP. 26 

 A STA roaming within an ESS establishes a new security association by one of two schemes: 27 

1. (Re-)Associating followed by IEEE 802.1X authentication. In this case the station repeats the 28 
same actions as for an initial contact association, but it also uses the MLME-29 
DELETEKEYS.request to remove the cryptographic key from the IEEE 802.11 MAC when it 30 
roams from the old AP. The STA also deletes the cryptographic keys when it 31 
disassociates/deauthenticates from all BSSIDs in the ESS. 32 

2. A STA already associated with the ESS can instead request its IEEE 802.1X Management Entity 33 
to authenticate with a new AP before associating to that new AP. In this case the Management 34 
Entity can request its IEEE 802.1X Supplicant to send an AuthenticationRequest to an AP with 35 
which it is not associated. The normal operation of the DSS via the old AP provides the 36 
communication between the STA and the new AP. The STA’s IEEE 802.11 Management Entity 37 
delays Reassociation with the new AP until IEEE 802.1X authentication completes via the DSS. If 38 
IEEE 802.1X authentication completes, then cryptographic keys shared between the new AP and 39 
the STA will be installed, creating an environment where Reassociation without a subsequent 40 
IEEE 802.1X full authentication makes sense. 41 

The MLME-DELETKEYS.request terminates a security association on the local STA. This primitive 42 
destroys the cryptographic keys established for the security association, so that they cannot be used to 43 
protect further IEEE 802.11 traffic. A STA’s IEEE 802.11 Management Entity uses this primitive in one of 44 
two situations: when it disassociates or deauthenticates from an AP in an ESS, and when it associates to a 45 
new AP. 46 
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The life cycle of a security association is different in an IBSS. When explicit authentication is not used, a 1 
STA sets the AuthenticationRequest variable to request that its IEEE 802.1X implementation initiate the 4-2 
way handshake of 8.5 with a Pre-Shared Key (PSK) with each IBSS peer STAs it encounters. A STA 3 
should use this primitive when it encounters another STA belonging to the IBSS with which it has no 4 
security association. 5 

Informative Note: A STA can receive IEEE 802.1X messages from a previously unknown MAC address. 6 
Membership in the IBSS is determined by the peer STA’s ability to use the correct PSK. 7 

Informative Note: Any STA targeted from the IBSS may decline to form a security association with the 8 
joining STA. An attempt to form a security association may also fail because, e.g., the peer uses a different 9 
pre-shared key from that which the STA expects. 10 

In an IBSS each STA defines its own group key to secure its broadcast/multicast transmissions. After 11 
establishing a security association, each STA shall use the Group Key Handshake to distribute its transmit 12 
Group Key to its new peer STA.  13 

A security association terminates in an IBSS in the same way it does in an ESS, by the IEEE 802.11 14 
Management Entity invoking the MLME-DELETEKEYS.request primitive. 15 

Informative Note: A STA should remove all association state and send a deauthenticate message if it receives 16 
an MLME-DELETEKEYS.request. 17 

8.4.1.1 IEEE 802.11 ESS authentication and key management primer (Informative) 18 

There are three authentication and key management architectures in IEEE 802.11, namely “Open System” 19 
and “Shared Key”, which were defined for use in the context of WEP in IEEE 802.11-1999, and the newer 20 
IEEE 802.1X-based authentication mechanisms that are defined for use in the context of a Robust Security 21 
Network (RSN). In fact, the terms RSN and an IEEE 802.11 LAN using IEEE 802.1X and CCMP, WRAP, 22 
or TKIP are synonymous. 23 

IEEE 802.1X “Port-Based Network Authentication” was originally designed for switched networks, in 24 
which eavesdropping is at least somewhat challenging. The original IEEE 802.1X standard assumes that 25 
tapping in to the communication link between a station and a switch is non-trivial, and relatively easy to 26 
detect. When the standard first appeared, networks were rapidly adopting switched topologies, abandoning 27 
shared hubs, so there was no strong demand for IEEE 802.1X to support shared-media LANs, although the 28 
standard does not prohibit operation over shared LAN topologies. As IEEE 802.11 LANs increased in 29 
popularity, the need for a proper authentication and key management presented itself, and it was natural to 30 
want to leverage mechanisms already been defined in another IEEE 802 standard. 31 

IEEE 802.1X-2001 defines a framework based on the Extensible Authentication Protocol (EAP)1 over 32 
LANs, also known as EAPoL. IEEE 802.1X extensions need to be defined to ensure that the network 33 
authentication services are secure in shared-medium networks such as those based on IEEE 802.11. 34 

EAPoL is used to exchange EAP messages. EAP messages perform authentication between a STA and an 35 
EAP entity known as the Authentication Server (AS). A STA seeking to be authenticated uses EAPoL to 36 
communicate with a device that enforces the authentication, for example, an Ethernet switch or an IEEE 37 
802.11 AP. The EAPoL exchange takes place between two entities, one associated with the station desiring 38 
to be authenticated, known as the “Supplicant,” and the other associated with the device that enforces the 39 
access to the network, e.g., the switch or AP, known as the “Authenticator”. Besides restricting network 40 
access only to authenticated stations, the Authenticator also acts as a mediator in the EAP conversation 41 
between the EAP Client and the AS. 42 

                                                           
1 The EAP was originally designed to support authentication over the Point-to-Point Protocol (PPP), and is a 

product of the Internet Engineering Task Force (IETF). 
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EAP packets are encapsulated in EAPoL frames to enable them to cross the LAN medium. EAPoL also 1 
provides some control features—e.g., an EAPoL-Start message was defined to initiate authentication; 2 
similarly, an EAPoL-Logoff message was defined to terminate a connection. IEEE 802.1X-2001 also 3 
defined an optional capability to use the EAPoL-Key message to exchange encryption keys, but did not 4 
define a secure key exchange. Note that the format of the EAPoL-Key message in IEEE 802.11 is different 5 
from that in IEEE 802.1X-2001. 6 

Figure 36 depicts the relationships among the Supplicant, associated with the STA, Authenticator, 7 
associated with the AP, and the Authentication Server (AS). While EAP messages are used between the 8 
Supplicant and AS, these messages are encapsulated in EAPoL frames as they are transmitted from 9 
Supplicant to Authenticator. Similarly, the EAP message may also be encapsulated over a “secure channel” 10 
between the Authenticator and AS. This secure channel is outside the scope of this specification. A typical 11 
implementation in practice, for example, might be based on Remote Authentication Dial-In User Service 12 
(RADIUS). Note that RADIUS is not mandated by the IEEE 802.11 or IEEE 802.1X standards, but 13 
RADIUS is a convenient protocol that may be used for this purpose. Like EAPoL, RADIUS has messages 14 
to augment EAP, for example, RADIUS may be used to transmit the pairwise master key (PMK) from the 15 
Authentication Server to the Authenticator, over the secure channel being provided by RADIUS or a 16 
protocol with similar attributes. The transmission of the PMK to the Authenticator is not accomplished 17 
using EAP messages, since EAP is an end-to-end protocol between the Supplicant and the AS. 18 

IEEE 802.1X
Authenticator

Port Access Entity

EAP Client

IEEE 802.1X
Supplicant

Port Access Entity

STA

 EAPoL Authentication
Server (AS)

 Secure
Channel

EAP Server EAP

STA  19 
Figure 36—Authentication and key management overview 20 

The EAP is not tied to any particular authentication algorithm, hence its extensibility. It defines a small 21 
number of messages used to communicate between the AS and the EAP Client. This design allows the two 22 
peer entities to mutually determine whether or not the newly connected device should be granted access to 23 
the network, based on the algorithm-specific authentication credentials, such as the user’s identification and 24 
password. The Authenticator is able to interpret the outcome of the negotiation without being required to 25 
participate in the negotiation itself, by simply recognizing an EAP-Success or EAP-Failure message. 26 

EAPoL carries EAP messages between the Supplicant and the Authenticator. The Authenticator acts as a 27 
relay for EAP packets by extracting them from within the EAPoL frames and sending those EAP packets to 28 
the Authentication Server over the secure channel. 29 

All EAPoL frames are normal IEEE 802.11 data frames, thus they follow the format of IEEE 802.11 30 
MSDUs and MPDUs. With reference to the IEEE 802.11 frame format defined in clause 7.1.2, an MPDU 31 
may be up to 2346 octets in length, which encapsulates an MSDU payload that is up to 2312 octets in 32 
length. The remaining 34 octets in the MPDU comprise the IEEE 802.11 header (30 octets) and the four-33 
octet Frame Check Sequence that concludes the frame. 34 

EAPoL messages are just like any other data packet (MSDU) that might be transmitted over an IEEE 35 
802.11 LAN, and as such are de-multiplexed using information contained in the LLC/SNAP header, which 36 
comprises the first eight octets after the MPDU header. The following figure illustrates an MPDU that 37 
contains an EAP packet, encapsulated in an EAPoL (IEEE 802.1X) header. 38 
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IEEE 802.11 MPDU Trailer
(FCS; 4 octets)

IEEE 802.11 MPDU Header
(34 octets)

1

D
S

1

C

1

S
S

3

OUI

2

T

EAP
Header

P
V

P
T PBL

1 21

802.1X
Header

C
o

1

I
D

1

Len

2

LLC SNAP

802.2

Type-Data
(up to 2295 octets)T

EAP Data
(up to 2296 octets)

1

 1 
Figure 37—Full 802.11 MPDU format 2 

The IEEE 802.2 LLC header’s DS (Destination Service Access Point, or DSAP) and SS (Source Service 3 
Access Point, or SSAP) fields are both set to a value of 0xAA, which indicates that an IEEE 802.2 Sub-4 
Network Access Protocol (SNAP) header follows the LLC header. The IEEE 802.2 LLC header’s Control 5 
field is set to 0x03, indicating that this is an unnumbered information frame. To indicate that a standard 6 
Ethernet type is being used in the IEEE 802.2 SNAP header’s Type field, the IEEE 802.2 SNAP OUI field 7 
is set to a value of 0x000000. A value of 0x888E in the SNAP header’s Type field indicates that an IEEE 8 
802.1X frame header is next. 9 

The IEEE 802.1X header begins after SNAP’s Type field, starting with the IEEE 802.1X Protocol Version 10 
(PV) field, the value of which is defined in the current IEEE 802.1X specification.. The next field is the 11 
one-octet IEEE 802.1X Packet Type (PT), which can take one of the five values, whose meanings are 12 
described in the following table. 13 

 14 
0x0
0 EAP-Packet Indicates that an EAPoL frame contains an EAP packet 

0x0
1 EAPoL-Start Used to initiate EAP protocol processing 

0x0
2 EAPoL-Logoff Not recommended for use with IEEE 802.11 

0x0
3 EAPoL-Key Used by the Authenticator and Supplicant to derive or exchange cryptographic 

keying information 

0x0
4 EAPoL-Encapsulated-ASF-Alert Used by a Supplicant to send ASF alerts prior to being fully authenticated 

The IEEE 802.1X Packet Body Length (PBL) follows the Packet Type. Because the LLC/SNAP header is 15 
eight octets long, and the IEEE 802.1X header is an additional four octets, consuming a total of 12 octets of 16 
the MSDU, the IEEE 802.1X Packet Body Length (PBL) value can be at most 2300 octets (since the 17 
MSDU can be at most 2312 octets). The limit of 2300 is for unencrypted EAPoL-KEY messages. Note that 18 
in cases where the EAPoL-Key message is encrypted—using WEP, CCMP, TKIP, or WRAP—additional 19 
octets will be consumed which will effectively reduce the maximum MPDU payload capacity, hence the 20 
maximum PBL will not be able to be as large.  21 

When the Packet Type field in an EAPoL packet is set to a value of 0x00 (meaning EAP-Packet), an EAP 22 
packet header follows the IEEE 802.1X header. The EAP packet header begins with a one-octet Code field 23 
that defines the function of the EAP packet. The EAP packet format is as follows: 24 

Data

Code Identifier Length

0
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

 25 
Figure 38—802.2 format 26 
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There are four EAP Codes: 0x01 (Request), 0x02 (Response), 0x03 (Success), and 0x04 (Failure). For 1 
EAP-Request or -Response packets, the one-octet Identifier field contains a value that is used to match 2 
Responses to Requests. 3 

An EAP packet need not have a Data field, but a Data field will be present if the Code is set to Request or 4 
Response. For such EAP-Request and EAP-Response packets, the first octet of the Data field is a Type field 5 
that indicates which authentication algorithm is in use (e.g., EAP-TLS, PEAP, TTLS, etc.). The remainder 6 
of the Data field will be algorithm-specific data.  7 

The STA initiates the association process. Once the STA and AP associate, the AP and STA will indicate 8 
success via one of the following APIs: 9 

• MLME-ASSOCIATE.indication, 10 

• MLME-ASSOCIATE.confirm, 11 

• MLME-REASSOCIATE.indication, or 12 

• MLME-REASSOCIATE.confirm. 13 

If the AP is RSN-capable and configured with RSN is enabled, the EAPoL-Start message is sent by the AP, 14 
which is triggered once the STA and the AP complete their association. The completion of the association is 15 
detected by one of the APIs above. The AP advertises its RSN capabilities in its own configuration-16 
dependent RSN IE. The AP constructs the IE based on the subset of its RSN capabilities enabled, and the 17 
AP then includes the RSN IE in its Beacon and Probe Response frames. The Supplicant’s STA also 18 
constructs an RSN Information Element (RSN IE) that represents its configured RSN capabilities in the 19 
management frames that are used to facilitate association, which lets the Authenticator’s STA (in the AP) 20 
know that this particular STA desires to join the RSN. 21 

After the association first forms, only IEEE 802.1X protocol messages (i.e., EAP and its associated 22 
authentication method) flow across the link until authentication completes; the Supplicant’s IEEE 802.1X 23 
Port Access Entity (PAE) filters all non-EAP traffic during this period. Until authentication completes with 24 
the distribution of a Pairwise Master Key (PMK), the PAE ensures that only EAP packets are sent or 25 
received between this STA and the wireless medium. 26 

The authentication process allows the Authenticator and the Supplicant to prove to each other that they both 27 
know the PMK and it is essential that this be done without divulging the PMK to eavesdroppers. Even 28 
though the EAP Supplicant has been successfully authenticated by the Authentication Server, it cannot use 29 
the link until it has successfully derived the necessary encryption and authentication keys, which depend on 30 
the cipher suite chosen in the RSN IE in the AP’s Beacon and Probe Response frames. The format of the 31 
RSN IE is as follows: 32 

Pairwise Key
Cipher Suite

(2 octets)

Authenticated Key
Suite Count
(2 octets)

Information
Element ID

(1 octet)

Version
(2 octets)

Length
(1 octet)

Group Key Cipher Suite
(4 octets)

Pairwise Key Cipher Suite List
(4m octets)

Authenticated Key Suite List (4n octets)

RSN Capabilities
(2 octets)

0 1 2 3 4 5 6 7

 33 
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Figure 39—RSN Information Element 1 

An EAP authentication method is negotiated as follows. One peer proposes an EAP authentication method 2 
to the other by sending an EAP-Request packet with the Type field’s value set to the assigned number of the 3 
desired authentication method. If the receiving peer supports that authentication method, it will respond 4 
with an EAP-Response using the same Type as was proposed by the first peer. If the receiving peer does not 5 
support this authentication method, its EAP-Response packet will have the Type set to “NAK”, and the 6 
original peer may then attempt to authenticate using a different method by proposing a different Type. A 7 
successful EAP authentication message flow is documented in the following figure. 8 

EAPoL-Start

EAPoL-Packet (EAP-Response/Identity)

EAPoL-Packet (EAP-Response/Auth-Protocol)

EAPoL

EAP-over-RADIUS
(or other secure channel)

EAPoL-Packet (EAP-Request/Identity)

EAPoL-Packet (EAP-Request/Auth-Protocol)

End-to-End EAP Exchange
(between Supplicant and AS)

Supplicant
(STA)

Authenticator
(AP)

Authentication
Server (AS)

EAPoL-Packet (EAP-Success)

 9 
Figure 40—IEEE 802.1X authentication exchange 10 

At the completion of a successful EAP authentication exchange, the AS informs the EAP Supplicant that the 11 
authentication has succeeded by sending an EAP-Success packet (Code = 0x03). The Authenticator is able 12 
to detect the EAP-Success code, and registers the fact that this EAP Supplicant now represents an 13 
authenticated station. Using the secure channel between the AS and the Authenticator, the AS also sends 14 
one other essential piece of information to the Authenticator, the Pairwise Master Key (PMK) that has been 15 
generated by both the EAP Supplicant and the AS. By virtue of the EAP Supplicant’s authentication 16 
exchange with the AS, the EAP Supplicant already knows the PMK. 17 

The Supplicant and the Authenticator cannot trust each other until they have securely determined that each 18 
party knows the PMK. In order to establish that trust relationship, the Authenticator and Supplicant use a 19 
“four-way handshake” to convince each other that they are who they claim to be, and to mutually derive the 20 
necessary encryption and authentication keys from the PMK. The four-way handshake does not reveal any 21 
essential keying information to eavesdroppers, but does provide each party with proof that they both know 22 
the PMK. 23 

The following diagram depicts the four-way handshake, composed of EAPoL-Key messages. The 24 
parenthetical items next to each message are the “interesting” parts of each EAPoL-Key Descriptor. There 25 
are always nine elements in the EAPoL-Key Descriptor, but not all are relevant to each message: 26 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

--`,`,,,,``,,``,`,````,,,,,`,`,-`-`,,`,,`,`,,`---



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  74

Supplicant
(STA)

Authenticator
(AP)

Authentication
Server (AS)

EAPoL

Secure Channel
(e.g., RADIUS with MPPE)

EAPoL-Key (ANonce)

EAPoL-Key (Install, ANonce, RSN IE, MIC)

EAPoL-Key (SNonce, RSN IE, MIC)

EAPoL-Key (Install, SNonce, MIC)

AS sends the Pairwise Master Key to the
Authenticator (AP) over their secure
channel (e.g., using RADIUS with MPPE)

 1 
Figure 41—4-Way Handshake 2 

A replay counter is part of each EAPoL-Key message, and enables detection (and thus prevention) of replay 3 
attacks. The replay counter is incremented by 1 for each successive message in the four-way handshake. 4 
Each retransmission of a given message uses the same replay counter value as was used when the message 5 
was first transmitted. 6 

The first EAPoL-Key message of the four-way handshake is sent from the Authenticator to the Supplicant. 7 
The main purpose of the first message is to carry the randomly generated Authenticator Nonce (ANonce). 8 
Any observer could eavesdrop on this message and learn the Authenticator’s chosen ANonce. Upon 9 
receiving the first message, the Supplicant has learned the ANonce. Subsequent messages in the four-way 10 
handshake ensure that only the legitimate Authenticator is in communication with the Supplicant. 11 

Once the Supplicant has received the first message and generated its own SNonce, it has sufficient 12 
information to generate keys used for directed packet transmission and reception. Also, derived keys 13 
protecting (i.e., providing message integrity and confidentiality to) the remainder of the key exchange are 14 
derived from the ANonce contained in this first message, as well as the SNonce and the STA’s RSN IE. 15 

Any eavesdropper could also have attempted to impersonate the Authenticator by forging an EAPoL-Key 16 
message after it saw the EAP-Success packet. However, such an impostor would not know the PMK, thus it 17 
will not be able to successfully forge future EAPoL-Key messages, so the only exposure at this point is 18 
possibly to denial-of-service attacks.  19 

The second EAPoL-Key message is from the Supplicant to the Authenticator, which acknowledges receipt 20 
of the first message. The second message contains a payload known as the RSN Information Element (RSN 21 
IE) that the Supplicant’s STA has constructed based on the cipher suites it supports, and is the same RSN IE 22 
that the STA used during the association process. The AP has created its own RSN IE that defines which 23 
cipher suites are allowed to be used within this ESS. By sending its RSN IE to the Authenticator, the 24 
Supplicant informs the Authenticator of which cipher suites it supports, which controls how the keys are 25 
derived. Of the set of cipher suites that are supported by the STA and the set that is supported by the AP, a 26 
valid cipher suite is chosen from the intersection of those two sets. 27 

The second message of the four-way handshake also transmits the Supplicant’s Nonce (SNonce) to the 28 
Authenticator. Once the Supplicant has randomly generated its SNonce, it now has sufficient information to 29 
derive the necessary encryption and authentication keys that will be used during this security association, 30 
pending successful completion of the four-way handshake. 31 

Finally, the second message also contains a digital signature that protects (i.e., is computed over) the entire 32 
EAPoL-Key packet, using one of the keys that the Supplicant has derived from the PMK and the two 33 
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Nonces, among other inputs. This digital signature is included in the second message in the MIC field of the 1 
EAPoL-Key Descriptor. The Authenticator will be able to verify this digital signature once it has received 2 
the second message from the Supplicant, and has itself derived the key that was used to compute this MIC 3 
field value. Only a Supplicant that knew both of the nonces and the PMK could have sent this message, 4 
since it contains a digital signature that could only have been computed if the PMK were known. 5 

Like the first message, the second message is also sent in the clear (but as noted above, it is protected by the 6 
digital signature that is computed over the EAPoL-Key message and included in the EAPoL-Key 7 
Descriptor). The second message can also be observed by third parties, who also could have seen the 8 
ANonce and SNonce in the first and second message, as well as the Supplicant’s RSN IE, but who 9 
nonetheless cannot forge the digital signature (MIC) in the EAPoL-Key message without knowledge of the 10 
PMK. 11 

The key derivation process alluded to above, in both the Supplicant and the Authenticator, is known as the 12 
“Pairwise Key Hierarchy”. The Pairwise Key Hierarchy defines how to combine the ANonce, the SNonce, 13 
the Authenticator’s MAC address (AA), the Supplicant’s MAC address (SA), and a specific ASCII string, 14 
as well as the PMK, as input to a pseudo-random function (PRF). The PRF outputs a large number of bits 15 
sufficient to define the EAPoL-Key encryption and message integrity check keys and the pairwise temporal 16 
key(s) for protecting unicast data traffic (the temporal keys are used for authentication and encryption). The 17 
length of the output of the PRF depends on the cipher suite that was determined based on comparing the 18 
RSN IEs in the association process. 19 

Specifically, the PRF output is separated into the following components: the EAPoL-Key MIC Key 20 
(abbreviated MK; used to digitally sign the EAPoL-Key message), the EAPoL-Key Encryption Key 21 
(abbreviated EK; used to encrypt the EAPoL-Key Descriptor’s Key Material field during the Group Key 22 
Exchange, but it is not used in the four-way handshake that implements the pairwise key exchange; the EK 23 
is used to encrypt the EAPoL-Key Key Material field of the EAPoL-Key Descriptor in the Group Key 24 
Exchange), and the temporal key(s) for the cipher suite defined in the RSN IE. The Pairwise Key Hierarchy 25 
is illustrated in the following figure. 26 

PRF-X (PMK, “Pairwise key expansion” || Min(AA, SA) || Max(AA, SA) || Min(ANonce, SNonce) || Max(ANonce, SNonce))

Pairwise Transient Key (PTK)

EAPoL-Key
MIC Key (MK)

EAPoL-Key
Encryption Key (EK)

Temporal Key 2
(TK2)

 128 bits  128 bits  128 bits  128 bits

 256 bits

Pairwise Master Key

 384 bits

Temporal Key 1
(TK1)

 512 bits  27 
Figure 42—Pairwise key hierarchy 28 

The complete output of the pseudo-random function (PRF) is known as the Pairwise Transient Key (PTK), of which 29 
bits 0 – 127 are the MK, bits 128 – 255 are the EK, and bits 256 – 383 represent temporal key number 1 (TK1). 30 
Temporal key number 2 (TK2), if present (which depends on the needs of the cipher suite defined in the RSN IE), is 31 
found in bits 384 – 511. 32 

Note that the Authenticator cannot perform the PTK derivation until it has received the SNonce from the Supplicant, 33 
since the SNonce is part of the input in the PTK derivation. In other words, the Authenticator cannot execute the 34 
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Pairwise Key Hierarchy until after it has received the second message of the four-way handshake. The Authenticator 1 
and the Supplicant both derive identical temporal keys because they both compute the Pairwise Key Hierarchy using 2 
the same inputs. Because only this Supplicant and this Authenticator (and the Authentication Server) are presumed to 3 
know the PMK, no eavesdropper can learn enough information from simply observing the four-way handshake to 4 
impersonate the Supplicant or the Authenticator. 5 

The third EAPoL-Key message of the four-way handshake is sent by the Authenticator to the Supplicant, and it is used 6 
to direct the Supplicant to install the temporal encryption key(s) in the Supplicant’s STA. The third message sets the 7 
“Install” bit for the first time in the four-way handshake, as well as the ANonce (the same randomly chosen value that 8 
was sent in the first message), the RSN IE (must be identical to the RSN IE that was sent in the AP’s Beacons and/or 9 
Probe Responses), and a digital signature computed over the third message’s EAPoL-Key packet by the Authenticator 10 
using the MK that it has now derived. 11 

When set, the EAPoL-Key message’s Install bit directs the receiver to configure its local STA with the derived 12 
temporal key(s). In the case of the third message the Supplicant is the receiver of the message, so the Authenticator is 13 
using the Install bit to tell the Supplicant to prepare to receive encrypted unicast traffic. The third message is similar to 14 
the first message, but it conveys much more information, built on what has been learned in the first and second 15 
messages. 16 

The final EAPoL-Key message of the four-way handshake is very similar to the second message. In this 17 
message, the Supplicant is directing the Authenticator to install the per-association temporal key(s) into the 18 
Authenticator’s STA. The fourth message is stating that the Supplicant has installed the temporal encryption 19 
key(s) in its STA and is ready to receive unicast data encrypted using the cipher suite specified in the RSN 20 
IE. As with the second and third messages, the fourth message contains a digital signature that is computed 21 
over the EAPoL-Key message using the MK. Since the fourth message acknowledges the third message, it 22 
tells the Authenticator that the temporal keys have been installed on the Supplicant’s STA. Furthermore, by 23 
virtue of the Install bit being set in the fourth message, the Supplicant is directing the Authenticator to 24 
install the temporal keys for this security association into its STA (i.e., in the AP). The entire fourth 25 
message is encrypted using the temporal keys and the cipher suite that has been negotiated prior to this 26 
point in the four-way handshake. 27 

Once the keys have been installed, the AP’s STA can send encrypted unicast traffic to the Supplicant’s 28 
STA. The fourth message’s EAPoL-Key Descriptor contains a digital signature over the EAPoL-Key 29 
message, which is digitally signed (i.e., MIC’ed) using the MK. This MIC field was computed as in the 30 
second and third messages. In contrast to the previous messages, the fourth message is not sent in the clear, 31 
but is encrypted using the derived temporal key(s) using whatever unicast cipher suite was defined in the 32 
RSN IE. Thus, the fourth message will be encrypted using CCMP, TKIP, or WRAP. 33 

If the fourth message does not reach the Authenticator, the Supplicant’s STA must still be prepared to accept 34 
unencrypted traffic from the Authenticator (which would most probably be a re-transmission of the third message, since 35 
the Authenticator will not have received the fourth message from the Supplicant, which, among other functions, serves 36 
to acknowledge the third message from the Authenticator). Provided the fourth message has been properly received and 37 
interpreted by the Authenticator, the per-association keys are installed on the Authenticator’s STA, and future unicast 38 
data is encrypted using TK1 and/or TK2, as required by the RSN IE. Once the four-way handshake is complete, the 39 
Authenticator’s and Supplicant’s IEEE 802.1X PAE permits unicast traffic to flow through their respective STAs, 40 
which encapsulates the packets according to the cipher suite(s) indicated in the RSN IE. 41 

The “Install” bit in the third and fourth messages directs the IEEE 802.1X entity in the Supplicant or the Authenticator, 42 
respectively, to configure its local STA with the keying information derived from the PTK. The API that is used to 43 
convey this information from the 802.1X entity to the STA is the MLME-SETKEYS.request. In the event that an 44 
Authenticator or Supplicant decides to terminate an association, the MLME-DELETEKEYS.request API is used. 45 

Now that the unicast pairwise key hierarchy calculations have been completed, unicast traffic must be sent in encrypted 46 
form, using the derived temporal keys. However, multicast and broadcast traffic would still need to be sent in the clear, 47 
which is why there is a small additional handshake (two messages) in which the Authenticator transmits the Group 48 
Transient Key (GTK) to the Supplicant. 49 

All the STAs in an ESS use the same Group Transient Key, but the Authenticator securely delivers it to each 50 
authenticated Supplicant, in a process that is protected by the unicast temporal encryption keys that have now been 51 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  77

derived. The EAPoL-Key messages of the GTK exchange are encrypted using unicast key(s) derived from the PTK. 1 
The encrypted Group Key exchange is illustrated in the following diagram: 2 

 3 
Figure 43—Group key handshake 4 

The Group Key Hierarchy involves a similar calculation to the Pairwise Key Hierarchy, in which the 5 
Authenticator derives the Group Transient Key from the Group Master Key, the Authenticator’s [MAC] 6 
Address (AA), and the GNonce, as shown in the following diagram: 7 

Group Master Key (GMK)

Group Transient Key (GTK)
(X=256 for TKIP, else X=128)

 128 bits

PRF-X(GMK, "Group key expansion", AA || GNonce)

 256 bits

Temporal Key 2
(TK2)

 128 bits

Temporal Key 1
(TK1)

 8 
Figure 44—Group key hierarchy 9 

As noted in the diagram, when TKIP is the cipher suite indicated in the RSN IE, the PRF is set to output 10 
256 bits of GTK, so that the Group Temporal Key 2 will also be derived, which is the second 128 bits of the 11 
output of the PRF. Otherwise (e.g., in the cases of CCMP and WRAP), the GTK is only 128 bits long. In 12 
such cases, the PRF’s output is just 128 bits long, and those 128 bits are directly mapped into the Group 13 
Temporal Key 1. 14 

Based on the contents of the RSN IE (i.e., whether or not TKIP is in use), a Supplicant that receives the 15 
encrypted GTK from the Authenticator is able to decipher one or two Temporal Keys from the GTK that it 16 
receives from the Authenticator. Both of the EAPoL-Key messages in the Group Key Exchange are digitally 17 
signed by the MK, after the EK has been used to encrypt the Key Material field of the EAPoL-Key 18 
Descriptor, which holds the GTK. The Group TK1 (and possibly also TK2), are subsequently configured 19 
into the Supplicant’s STA and the Authenticator’s STA via the MLME-SETKEYS.request API. When this 20 
procedure is complete, the Supplicant’s STA can now send encrypted broadcast and multicast traffic, in 21 
addition to the prior ability to send encrypted unicast traffic. 22 
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8.4.2 RSN selection 1 

In an RSN or a TSN STAs (including APs) shall advertise their capabilities by asserting the Robust Security 2 
bit of the Capabilities Information Field in Beacon and Probe Response messages. In an RSN a STA may 3 
also include the RSN Information Element (RSN IE, see 7.3.2.17) in Beacons, and Probe Responses. When 4 
doing so, the included RSN IE shall specify all the authentication and cipher suites enabled by its policy. An 5 
RSN-capable STA operating as part of a TSN may omit the RSN IE from its Beacons and Probe Responses. 6 
A STA shall not advertise any authentication or cipher suite that is not enabled and that it will not agree to 7 
use. 8 

The STA’s IEEE 802.11 Management Entity shall utilize the MLME-SCAN.request to identify neighboring 9 
STAs that assert Robust Security and advertise an SSID identifying an authorized ESS or IBSS. A STA 10 
may decline to communicate with STAs that do not assert Robust Security, or do not advertise an 11 
authorized SSID. A STA may also decline to communicate with other STAs that do not advertise authorized 12 
authentication and cipher suites with its RSN IE. 13 

A STA shall advertise the same RNSE in both its Beacons and Probe Responses. 14 

Informative Note: Whether or not a STA may attempt to communicate with another STA that asserts Robust 15 
Security but which does not advertise an authorized SSID is a matter of policy. 16 

Informative Note: Whether a STA with Robust Security enabled may attempt to communicate with a STA 17 
that does not assert RSN is a policy question. 18 

Informative Note: It should be possible to independently enable or disable the following in an RSN AP: 19 

• RSN 20 

• TSN 21 

• WEP using pre-RSN IEEE 802.1X key management 22 

• WEP without key management. 23 

For RSN an AP should support TKIP as well as CCMP. 24 

Informative Note: It should be possible to independently enable or disable the following in an RSN STA: 25 

• RSN 26 

• WEP using pre-RSN IEEE 802.1X key management 27 

• WEP without key management. 28 

Informative Note: As a practical matter, the multicast cipher suite must be the weakest unicast cipher suite 29 
enabled. 30 

Informative Note: An AP should support pre-shared keys. 31 

In an IBSS a STA may also identify another STA as belonging to the same IBSS by receiving a protected 32 
message with A3 asserting the BSSID of the IBSS. If a STA does not already have a security association 33 
with the message source, the receiver will not have cryptographic keys to decapsulate messages it receives 34 
from that STA. On receiving a protected message from such a STA, the receiver should attempt to initiate a 35 
security association, as described in 8.4.1. 36 

Informative Note: Typically this sort of message will be broadcast/multicast. It is also possible to receive a 37 
protected unicast message after a STA has reset in a way that is undetectable to the message source. 38 
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Similarly, if a STA in an IBSS receives the first message of a 4-way handshake from an unknown STA 1 
asserting the IBSS BSSID as A3, the STA’s IEEE 802.1X implementation should respond, in an attempt to 2 
establish a security association. 3 

8.4.3 RSN policy selection in an ESS 4 

RSN policy selection in an ESS utilizes the normal IEEE 802.11 association procedure. RSN policy 5 
selection is performed by the associating STA. The STA does this by including an RSN IE in its 6 
(Re)Association Requests. 7 

In an RSN an AP shall not associate with pre-RSN STAs, i.e., STAs that fail to assert RSN. 8 

Informative Note: This can be enforced by configuring the AP to use only RSN cipher and authentication 9 
suites, i.e., by disabling WEP and pre-RSN IEEE 802.1X key management. 10 

The STA initiating an association shall insert an RSN IE into its (Re)Association Request whenever the 11 
targeted AP indicates RSN support. The initiating STA’s RSN IE shall include one authentication and 12 
pairwise cipher suite from among those advertised by the targeted AP in its Beacons and Probe Responses. 13 
It shall also specify the group key cipher suite specified by the targeted AP. If at least one RSN IE field 14 
from the AP’s RSN IE fails to overlap with any value the STA supports, the STA shall decline to associate 15 
with that AP. It is invalid in an RSN to specify “None” as the Pairwise cipher. 16 

If an RSN-capable AP receives a (Re)Association Request including an RSN IE, and if it chooses to accept 17 
the association, the AP shall, to secure this association use the authentication and pairwise key cipher suites 18 
the RSN IE in the (Re)Association Request specifies. 19 

A STA shall observe the following rules when processing an RSN IE: 20 

• A STA shall advertise the highest Version it supports.  21 

• A STA shall request the highest Version field value it supports among all those a peer STA 22 
advertises. 23 

• STAs without overlapping supported Version field values shall not use RSN methods to secure 24 
their communication. 25 

• A STA shall ignore OUI values it does not recognize. 26 

In order to accommodate local security policy, a STA may choose not to associate with an AP that does not 27 
support any pairwise key cipher suite.  28 

8.4.3.1  TSN policy selection 29 

If the AP includes the RSN IE in its Beacons or Probe Response messages, the forgoing applies in a TSN—30 
RSN STAs shall act as if it is operating in an RSN, by including the RSN IE in its (Re)association requests. 31 
A STA may omit the RSN IE from (Re)association Requests it transmits to APs that fail to include the RSN 32 
IE in their Beacon and Probe Response messages, and the STA shall not use RSN methods with such an 33 
AP; instead, it shall use a pre-configured WEP key to secure its communication. 34 

An RSN-capable AP configured to operate in a TSN may include the RSN IE, and shall associate with both 35 
RSN and pre-RSN STAs. This means that an RSN-capable AP shall respond to an associating STA that 36 
includes the RSN IE just as in an RSN. 37 

If an AP operating within a TSN receives a (Re)association request without an RSN IE, it shall allow 38 
communications only if a WEP key has been configured to secure communication. If a WEP key is not 39 
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installed, the AP shall reject the association request; if a WEP key is configured, the AP may accept the 1 
request. 2 

An AP cannot support multiple group key cipher suites simultaneously within an ESS. In particular, a TSN 3 
must use the cipher suite supported by the least capable STA it admits as the group key cipher suite. 4 

8.4.4  RSN policy selection in an IBSS 5 

 6 

The IEEE 802.1X implementations of two directly communicating STAs negotiate pairwise key cipher 7 
suites using the 4-way handshake. Thus, each pair of STAs within an IBSS may use IEEE 802.1X to 8 
negotiate its own pairwise key cipher suite. As specified in 8.5.2, Messages 2 and 3 of the 4-way handshake 9 
convey an RSN IE. The Message 2 RSN IE includes a list of allowed pairwise key cipher suites, and the 10 
RSN IE in Message 3 reports the selected the pairwise key cipher suite; the Message 3 RSN IE shall specify 11 
a pairwise key cipher suite from those suggested in Message 2, or else the 4-way handshake shall fail. 12 
Beacons and Probe Responses within an IBSS shall specify an empty list of pairwise key cipher suites. 13 

Informative Note. An IBSS does not use the Beacon/Probe Response negotiation mechanism, as knowledge 14 
of a peer STA within an IBSS may not come from the Beacon or Probe Response source.  15 

The IEEE 802.1X implementations shall check that the group key cipher suite and authenticated key 16 
management protocol match those in the Beacons and Probe Responses for the IBSS. IEEE 802.1X can 17 
extract this information from IEEE 802.11. 18 

Informative Note: The RSN information elements in message 2 and 3 are not the same as in the MAC 19 
messages, the multicast cipher and AKMP are the same but the unicast ciphers may be different. 20 

Informative Note: When an IBSS network uses pre-shared keys, STAs can negotiate a unicast cipher. 21 
However, any STA in the IBSS can derive the pairwise keys of any other that uses the same pre-shared key 22 
by capturing the first two messages of the 4-way handshake. 23 

8.4.4.1  TSN policy selection 24 

Non-RSN STAs generate Beacons and Probe Responses without an RSN IE, and will ignore the RSN IE, 25 
while RSN stations will include the RSN IE in Beacons and Probe Responses. This allows an RSN STA to 26 
identify the non-RSN STAs from which it has received Beacons and Probe Responses. If an RSN STA 27 
instead identifies another IBSS member on the basis of a received broadcast/multicast message, it cannot 28 
make this judgment directly. 29 

If an RSN STA in a TSN IBSS cannot identify a newly identified peer as RSN, it may treat the new STA as 30 
non-RSN and attempt to communicate with it using WEP and a default WEP key. 31 

8.4.5 MPDU filtering 32 

When the policy selection process chooses IEEE 802.1X authentication, a STA (including AP) shall filter 33 
all non-IEEE 802.1X class 3 MPDUs after association completes but prior to the completion of IEEE 34 
802.1X authentication and key management. 35 

Informative Note. Filtering class 3 MPDUs is not required during pre-authentication.  36 

Explicitly, the STA shall begin this filtering when the MLME-ASSOCIATE.indication, MLME-37 
ASSOCIATE.confirm, MLME-REASSOCIATE.indication, or MLME-ASSOCIATE.confirm indicates it 38 
has formed a new association with a peer STA. 39 

 40 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

--`,`,,,,``,,``,`,````,,,,,`,`,-`-`,,`,,`,`,,`---



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  81

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

Figure 45—Sequence of Filtering-related Events 14 

The STA shall relax this filtering to permit authorized unicast MPDUs when IEEE 802.1X uses the MLME-15 
SETKEYs.request to initialize pairwise temporal keys for the association. The STA shall relax this filtering 16 
to permit authorized broadcast/multicast MPDUs when IEEE 802.1X uses the MLME-SETKEYS.request to 17 
initialize the group temporal key for the association. 18 

By definition, authorized MPDUs shall be 19 

1. received IEEE 802.1X messages. 20 

Informative Note. It is assumed that the IEEE 802.1X Supplicant or Authenticator will discard received IEEE 21 
802.1X messages that are not relevant to the current state, e.g., ones not protected by the current pairwise 22 
master key.  23 

2. received unicast class 3 MPDUs successfully protected by the agreed-upon temporal key; 24 

3. received multicast/broadcast class 3 MPDUs successfully protected by the agreed upon temporal 25 
group key. 26 

4. once a temporal key is configured, any class 3 MPDU to be transmitted as a unicast; 27 

5. once a group temporal key is configured, any class 3 MPDU to be transmitted as a multicast or 28 
broadcast. 29 

Informative Note: In a TSN the group key may be used for unicast communication as well as broadcast/multicast 30 
communication. In this case IEEE 802.1X does not configure the pairwise key. 31 

Figure 45 depicts a time-sequence diagram of the events related to filtering. 32 

T
i
m
e 

(Re)associate Request 

(Re)associate Response 

Begin filtering non-
802.1X data MPDUs for 
this association 

Begin filtering non-
802.1X data MPDUs for 
this association 

802.1X Authentication 

SETKeys(pairwise TK): 
Allow pairwise data 
MPDUs protected by the 
pairwise key. 

4-way handshake 

SETKEYS(pairwise TK): 
Allow pairwise data 
MPDUs protected by the 
pairwise key. 

SETKEYS(group TK): 
Allow data MPDUs 
protected by the group key. 

Group key handshake 

SETKEYS( group TK): 
Allow data MPDUs 
protected by the group key. 

STA AP 
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8.4.6 RSN authentication in an ESS 1 

When IEEE 802.1X authentication is an authentication option, an RSN-capable STA may use IEEE 802.11 2 
Open System Authentication prior to association or Reassociation. 3 

Informative Note: IEEE 802.1X authenticates in a layer above the IEEE 802.11 MAC. It removes 4 
authentication processing from the IEEE 802.11 MAC and delegates this function to IEEE 802.1X. A STA 5 
may become authenticated via IEEE 802.1X if dot11AuthenticationType at the recipient STA is set to IEEE 6 
802.1X authentication. IEEE 802.1X authentication may fail, as a STA may decline to authenticate with any 7 
other STA. 8 

IEEE 802.1X authentication is initiated by any one of the following mechanisms: 9 

1. If a STA negotiates to use IEEE 802.1X authentication during (re)association, the STA’s 10 
management entity can respond to the  MLME-ASSOCIATE.confirm (resp. indication) by 11 
requesting the STA’s Supplicant (resp. AP’s Authenticator) to initiate IEEE 802.1X authentication. 12 
Thus, in this case, authentication is driven by the STA’s decision to associate and the AP’s 13 
decision to access the association. 14 

2. If a STA’s MLME-SCAN.indication finds another AP within the current ESS, a STA may signal 15 
its Supplicant to use IEEE 802.1X to pre-authenticate with that AP. 16 

Informative Note: The IEEE 802.1X Supplicant of a roaming STA initiates pre-authentication by sending an 17 
EAP-Start message to a new AP via its old AP and the DS. 18 

3. If a STA receives an IEEE 802.1X message, it delivers this to its Supplicant or Authenticator, 19 
which may initiate a new IEEE 802.1X authentication. 20 

Informative Note: The IEEE 802.1X Authenticator of an AP initiate authentication by sending an EAP-21 
Request/Identity message to the Supplicant of a STA. 22 

Informative Note: When a STA (re)associates with an AP without a (recent enough) pre-authentication, the 23 
AP has no cryptographic keys configured for the STA. In this case, the AP’s Authenticator will force a full 24 
IEEE 802.1X authentication. In the case where the STA has recently pre-authenticated with the AP, the AP 25 
will retain the STA’s IEEE 802.1X identity and cryptographic keys from the pre-authentication. In this case, 26 
the AP’s Authenticator may proceed directly to key management in response to the STA’s Supplicant’s EAP-27 
Response/Identity. 28 

Informative Note: Pre-authentication completes when the AP’s IEEE 802.1X Authenticator sends the first 29 
message of the 4-way handshake to the STA’s IEEE 802.1X Supplicant. 30 

Informative Note: If IEEE 802.1X authentication completes successfully, the AP’s Authenticator forwards an 31 
EAP-Success message to the STA’s Supplicant and then initiates the 4-way handshake, to complete key 32 
management. If IEEE 802.1X authentication fails, the AP’s Authenticator uses the MLME-33 
DEAUTHENTICATE.request primitive to inform IEEE 802.11 of the problem. 34 

The AP shall respond to an IEEE 802.1X authentication failure by sending the STA a Disassociation 35 
message. 36 

A STA (including an AP) shall pass IEEE 802.1X data frames. Being data frames, they shall be sent in the 37 
clear if no pairwise keys have been established by key management, and the established pairwise keys shall 38 
protect the IEEE 802.1X data frames otherwise.  39 

Informative Note: There is a potential race condition with the final IEEE 802.1X message when an 40 
association begins, in that it may be sent unencrypted. Accordingly the filtering rules in 8.4.5 require the 41 
MAC to pass all IEEE 802.1X messages even if keys have been configured. This sort of race condition is 42 
inherent in all key management schemes, and cannot be removed by “clever” design. 43 
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If a STA is associated with an AP, it shall disassociate if IEEE 802.1X authentication with that AP’s 1 
Authenticator fails. If IEEE 802.1X authentication fails, a non-AP STA may associate again with the same 2 
to reinitiate the process, or attempt to associate with another AP. 3 

Informative Note: IEEE 802.1X uses the MLME-DEAUTHENTICATE.request primitive to inform the 4 
802.11 MAC when authentication failed. 5 

Informative Note: There is no requirement to disassociate with the associated AP if pre-authentication with a 6 
different AP fails. 7 

8.4.6.1  Pre-authentication and key management (Informative) 8 

A STA shall not use pre-authentication except when pairwise keys are employed. 9 

When pre-authentication is used, then 10 

1. Authentication is independent of roaming. 11 

2. the STA’s Supplicant may be authenticate with multiple APs at a time. 12 

Informative Note. Pre-authentication can be useful as a performance enhancement, as Reassociation will not 13 
include the cost of a full reauthentication when it is used. 14 

Pre-authentication relies on IEEE 802.1X. A STA can initiate pre-authentication whenever it has a link 15 
established with an AP. To effect pre-authentication, the STA sends an IEEE 802.1X EAP-Start message as 16 
a data frame to the BSSID of a targeted AP via the AP with which it is associated. Thus, the STA sets the 17 
To DS subfield in the Frame Control Field. It is the responsibility of the associated AP to forward the data 18 
frame to the targeted AP via the DS. 19 

An AP’s Authenticator that receives an EAP-Start message via the DS may initiate 802.1X authentication 20 
by sending an EAP-Request/Identity to the STA via the DS. The DS will be configured to forward this 21 
message to the AP with which the STA is associated. The pre-authentication exchange ends when the 22 
Authenticator sends the first message of the 4-way handshake. 23 

A STA may initiate pre-authentication with any AP within its present ESS with pre-authentication enabled, 24 
whether or not the targeted AP is within radio range. 25 

Informative Note: Pre-authentication is a MAC level mechanism, so cannot be used across, .e.g., IP subnet 26 
boundaries. 27 

If pre-authentication is not used, the STA must make a roaming decision prior to authentication. Data 28 
transfer will halt during the IEEE 802.11 authentication and association, the IEEE 802.1X authentication, 29 
and IEEE 802.1X key management. 30 

When pre-authentication is used, the STA’s IEEE 802.1X Supplicant must cache the PMK for some period, 31 
in case the STA associates with the AP with which the STA’s Supplicant has pre-authenticated. 32 

Similarly, the AP’s IEEE 802.1X Authenticator must cache the PMK key for some period in case the pre-33 
authenticated STA associates with the AP. If during authentication the AP’s Authenticator finds it has 34 
cached the PMK for the associated STA, it may respond with an immediate EAP-Success message and then 35 
initiate the 4-way handshake. 36 

Both the Supplication and the Authenticator may delete a cached PMK if the pre-authenticated STA does 37 
not associate with the selected AP after some time interval. 38 
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Informative Note: Even if a STA has pre-authenticated, it is still possible that it may have to undergo a full 1 
IEEE 802.1X authentication, as the AP’s Authenticator may have purged its PMK due to, e.g., unavailability 2 
of resources, or slowness of the STA to authenticate, etc. 3 

Pre-authentication can fail, and an AP’s Authenticator or STA’s Supplicant can destroy keys established by 4 
pre-authentication prior to association. If the AP’s Authenticator loses pre-authentication keys in this 5 
manner, it shall send an IEEE 802.11 Deauthentication message on receiving any encrypted packets from 6 
the station. 7 

Pre-authentication introduces new opportunities for denial-of-service attack. To limit the efficacy of these 8 
attacks, STAs (including APs) shall rate-limit IEEE 802.1X messages. STAs shall ignore IEEE 802.1X 9 
from APs with which it is neither associated nor pre-authenticating. 10 

8.4.7  RSN authentication in an IBSS 11 

When authentication is used in an IBSS, it is driven by the STA wishing to establish communications. The 12 
Management Entity of this STA chooses a set of STAs with which it may want to authenticate, and then 13 
may cause the MAC to send an IEEE 802.11 Open System Authentication message to each targeted STA. 14 
Targeted STAs that wish to respond will return an IEEE 802.11 Open System Authentication message to 15 
the initiating STA. The STA Management Entity will then request its local IEEE 802.1X Supplicant to 16 
authenticate to the Authenticator of each responding STA. The STA’s Supplicant begins the authentication 17 
process by sending an EAP-Start message to the Authenticator. 18 

When it receives an MLME-Authentication.indicate due to an Open System Authentication Request, the 19 
IEEE 802.11 Management Entity on a targeted STA shall respond with an Open System Authentication 20 
Response and then request its Authenticator to begin IEEE 802.1X authentication, i.e., to send an EAP-21 
Request/Identity message to the Supplicant. 22 

The IEEE 802.1X messages are sent as IEEE 802.11 data messages. The data messages are sent with the 23 
FromDS and ToDS bits set to 0 and they are sent unencrypted since no keys are available.  24 

The EAPOL-Key message is used to exchange information between the Supplicant and the Authenticator to 25 
negotiate a fresh pairwise temporal key. There is a single Pairwise key between the Supplicant and 26 
Authenticator produced by the 4-way handshake. The Pairwise key is used to transfer Group key updates 27 
and may be used as a Pairwise transient key.  28 

8.4.8  RSN key management in an ESS (Informative) 29 

When the IEEE 802.1X authentication per se completes, the STA’s IEEE 802.1X Supplicant and the IEEE 30 
802.1X AS will share a secret, called a Pairwise Master Key (PMK). The PMK acts as a master session key. 31 
The final step of security association set up occurs when the AS transfers the PMK to the AP with which the 32 
STA is associated, followed by a key confirmation handshake between the STA and the AP. The key 33 
confirmation handshake effectively replaces the function played by the IEEE 802.1X Success message in a 34 
secure wired network. 35 

The key confirmation handshake is effected by an IEEE 802.1X protocol called the 4-way handshake. The 36 
purposes of the 4-way handshake are 37 

1. to confirm the existence of the PMK at the peer; 38 

2. to insure that the security association keys are fresh, and 39 

3. to synchronize the installation of session keys into the MAC. 40 

The first message of the 4-way handshake is also utilized to signal the successful completion of a pre-41 
authentication exchange. 42 
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The 4-way handshake is implemented using EAPOL-Key messages, described in 8.5. 1 

Informative Note. Neither the AP nor the STA can use the PMK for any purpose but the one specified herein 2 
without compromising the key. If the AP uses it for another purpose, then the STA can masquerade as the 3 
AP; similarly if the STA reuses the PMK in another context, then the AP can masquerade as the STA. These 4 
problems are possible because the IEEE 802.1X architecture as currently formulated does not explicitly bind 5 
the PMK to this particular session between the AP and the STA. 6 

IEEE 802.1X signals the completion of key management by utilizing the MLME-SETKEYS.request to 7 
configure the agreed-upon temporal pairwise key into the 802.11 MAC. 8 

A second key exchange is also defined, to distribute a temporal group key. This is called the group key 9 
handshake. When the 4-way handshake completes, the AP’s Authenticator can use the group key 10 
handshake to transfer the temporal group key for the Group Key cipher suite to the STA’s Supplicant, to 11 
allow the STA to receive “secure” broadcast/multicast traffic. The group key handshake uses the EAPOL-12 
Key messages for this exchange. When it completes, the STA can use the MLME-SETKEYS.request 13 
primitive to configure the temporal group key into the IEEE 802.11 MAC. 14 

The AP may queue a Group key update message it cannot immediately send. If the AP later deletes this 15 
message prior to its transmission, the AP should disassociate the STA. 16 

8.4.9  RSN key management in an IBSS 17 

To establish a security association between two STAs in an IBSS, each STA shall support an IEEE 802.1X 18 
Authenticator and Supplicant, and each Authenticator initiates the 4-way handshake with the other STA’s 19 
Supplicant. 20 

The 4-way handshake is used to negotiate the pairwise key cipher suites. This is accomplished by include an 21 
RSN IE in the exchange initiated by the Authenticator whose STA has the lower MAC address. Message 2 22 
of this exchange contains a list of pairwise key cipher suites, and Message 3 contains a single unicast 23 
cipher. If this exchange negotiates a pairwise key cipher suite, IEEE 802.1X installs the temporal key 24 
portion of the Pairwise Transient Key into the IEEE 802.11 MAC. Each Authenticator also uses the PTK 25 
negotiated by the exchange it initiates to distribute its own Group Transient Key. Each Authenticator 26 
generates its own Group keys, and uses the Group Key handshake to transfer the GTK to other STAs with 27 
whom it has completed a 4-way handshake. 28 

A STA’s IEEE 802.1X implementation shall check that the multicast cipher and AKMP matches that in 29 
Beacons and Probe Response received for the IBSS. 30 

8.4.10  RSN security association termination 31 

When a STA disassociates or deauthenticates, it shall delete any pairwise or group keys configured. 32 
Similarly, if a non-AP STA receives the MLME-ASSOCIATE.request or MLME-REASSOCIATE.request 33 
primitive when pairwise or group keys are configured, it shall delete them, If an AP receives a 34 
(Re)Association Request message from a STA that is already associated, it shall delete any pairwise keys 35 
associated with that STA. 36 

8.4.10.1 Disassociate and Deauthentication message handling 37 

Since key management is independent of the IEEE 802.11 state, keys may or may not be available in each 38 
of these states, so Deauthentication and Disassociate messages may or may not be sent when keys are 39 
available. 40 

There are a number of abnormal situations that can cause a STA or AP to lose state. For example, a STA 41 
may be in State 3 when its associated AP is in State 1. The STA will protect data messages it sends to the 42 
AP. Then the AP cannot decapsulate messages it receives from the STA. The AP needs to send a 43 
Deauthentication message to the STA to force it into State 1. 44 
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Under normal circumstances STAs do not send Disassociate or Deauthentication messages, because the 1 
roam out of range or their user powers them off. Instead, APs commonly use a timeout to remove 2 
association state. A common case occurs when a STA, wanting to form a new association, is in State 1 and 3 
the AP is in State 3, timing out a prior association. This action needs to clear the AP’s association state for 4 
this STA. 5 

The following cases occur: 6 

1. The AP needs to accept authenticate messages without being able to validate them, to handle STAs 7 
moving out of range. 8 

2. The AP needs to accept associate messages without being able to validate them, to handle the first 9 
time associate. 10 

3. A STA needs to accept Deauthentication messages without being able to validate them, to handle 11 
an AP restarting or otherwise losing the STA’s association. APs also time out association state 12 
when no traffic is received from the STA. 13 

The APs response to Disassociate and Deauthentication messages are in the following table: 14 

Table 4—AP response to Disassociate and Deauthentication messages 15 

AP state IEEE 802.1X 
portSecure 

AP response to Disassociate or 
Deauthentication messages 

AP response to other 
messages 

1 N Process message Process message 

1 Y Process message Process message 

2 N Process message Process message 

2 Y IEEE 802.1X indicate to MLME Process message 

3 N Process message Process message 

3 Y IEEE 802.1X indicate to MLME Process message 

This changes the handling of received Deauthentication and Disassociate messages when keys are available. 16 
This does not affect the procedures for the MLME-Deauthentication and MLME-Disassociate interfaces. In 17 
the received message case, an IEEE 802.1X re-authentication is requested. Failure of the IEEE 802.1X 18 
authentication returns the AP to State 1, generating a Deauthentication message by calling the MLME-19 
Deauthenticate.Request interface. 20 

The MLME SAP interface shall still indicate disassociate or Deauthentication indications but the MLME 21 
should not change the STA state. The MLME may initiate an IEEE 802.1X re-authentication depending on 22 
its knowledge of the IEEE 802.1X authentication state. 23 

Table 5—non-AP STA response to Disassociate and Deauthentication messages 24 
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STA state 802.1X 
portSecure 

STA response to Disassociate or 
Deauthentication messages 

STA response to other 
messages 

1 N Process message Process message 

1 Y Process message Process message 

2 N Process message Process message 

2 Y IEEE 802.1X indicate to MLME Process Message 

3 N Process message Process message 

3 Y IEEE 802.1X indicate to MLME Process message 

This changes the handling of receiving Deauthentication and Disassociate messages when keys are 1 
available. In this case, an IEEE 802.1X re-authentication is requested. If IEEE 802.1X authentication fails, 2 
this returns the STA to State 1 and causes it to send a Deauthentication message. 3 

The MLME SAP interface shall still indicate disassociate or Deauthentication indications, but the MLME 4 
should not change the STA state. The MLME may initiate an IEEE 802.1X re-authentication depending on 5 
its knowledge of the IEEE 802.1X authentication state. 6 

8.4.10.2 Illegal data transfer 7 

In an RSN a STA and an AP transfer only protected data packets, with the only unprotected data packets 8 
allowed being unicast IEEE 802.1X message; these are permitted only when no Pairwise key is shared 9 
between the STA and the AP. If the STA and AP key state gets out of synchronization the following rules 10 
apply: 11 

1. If an AP receives a unicast protected packet when it does not have keys to decapsulate, it shall 12 
send a Disassociate message to the STA and discard the data packet. 13 

2. If a non-AP STA receives a unicast protected packet when it does not have keys to decapsulate the 14 
packet, it shall discard the data packet and send a Disassociate message to the AP; if the STA 15 
wants communications to continue, it should follow the Disassociate message with an immediate 16 
associate request to the AP. 17 

3. On receiving a Disassociate or Deauthentication message, a STA shall delete the Pairwise key and, 18 
if it wants to continue communications, Reassociate to an AP of the same ESS. 19 

8.5  Keys and key distribution 20 

 8.5.1  Key hierarchy 21 

RSN defines two key hierarchies: 22 

1. Pairwise key hierarchy, to protect unicast traffic; and 23 

2. Group key hierarchy, to protect multicast traffic. 24 

Informative Note: Pairwise key support with TKIP, WRAP, or CCMP allows a receiving STA to detect MAC 25 
address spoofing and data forgery. The RSN architecture binds the transmit and receive addresses to the 26 
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pairwise key. If an attacker creates an MPDU with the TA, then the decapsulation procedure at the receiver 1 
will generate an error. Group keys do not have this property. 2 

The description of the key hierarchies uses the following two functions: 3 

• L (Str, F, L) From Str starting from the left, extract bits F through F+L bits, using the 802.11 4 
bit conventions from 7.1.1. 5 

• PRF-n Pseudo-random function producing n bits of output, defined in 8.5.1. 6 

The symbol AA denotes the IEEE 802.1X Authenticator MAC Address, and SA denotes the Supplicant’s 7 
MAC Address.  In an ESS, AA is the wireless MAC address of the AP, and SA the MAC address of the 8 
STA. 9 

A STA shall support a single pairwise key for any TA/RA pair. The TA/RA identifies the pairwise key, 10 
which does not correspond to any WEP key id. Group keys shall not use WEP key id 0. Instead, a group 11 
key is identified by WEP key id 1 or 2 and the TA/RA pair. 12 

8.5.1.1  PRF 13 

A Pseudo-Random Function (PRF) is used in a number of places in this document. Depending on its use it 14 
may need to output 128 bits, 192 bits, 256 bits, 384 bits or 512 bits. This section defines five functions: 15 

• PRF-128, which outputs 128 bits, 16 

• PRF-192, which outputs 192 bits, 17 

• PRF-256, which outputs 256 bits, 18 

• PRF-384, which outputs 384 bits, and 19 

• PRF-512 which outputs 512 bits. 20 

In the following, A is a unique label for each different purpose of the PRF; Y is a single octet containing 0, 21 
X is a single octet containing the parameter, and || denotes concatenation as usual. 22 

H-SHA-1(K, A, B, X) ← HMAC-SHA-1(K, A || Y || B || X) 23 
PRF-128(K, A, B) = PRF(K, A, B, 128) 24 
PRF-192(K, A, B) = PRF(K, A, B, 192) 25 
PRF-256(K, A, B) = PRF(K, A, B, 256) 26 
PRF-384(K, A, B) = PRF(K, A, B, 384) 27 
PRF-512(K, A, B) = PRF(K, A, B, 512) 28 

PRF(K, A, B, Len) 29 
for i  ← 0 to (Len+159)/160 do 30 

R ← R || H-SHA-1(K, A, B, i) 31 
return L(R, 0, Len) 32 

8.5.1.2  Pairwise key hierarchy 33 

The Pairwise key hierarchy utilizes PRF-384 or PRF-512 to derive session specific session keys from a 34 
PMK, as depicted in Figure 46. The PMK shall be 256 bits. The Pairwise key hierarchy takes a Pairwise 35 
Master Key and generates a Pairwise Transient Key. The PTK is partitioned into EAPOL-Key MIC and 36 
Encryption keys, and temporal keys used by the MAC to protect unicast communication between the 37 
Authenticator’s and Supplicant’s respective STAs. Pairwise keys are used between a single Supplicant and a 38 
single Authenticator. 39 
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Informative Note: In an ESS, the Pairwise Master Key results from authentication between the Supplicant 1 
and Authentication Server involved. This is often but not always a fresh key. An EAP authentication method 2 
normally has a Master Key generated by the authentication. In this case the PMK is derived from the Master 3 
Key. This key generation is normally carried out independently and simultaneously on the Authentication 4 
Server and the Supplicant, based on information that was communicated between the Authentication Server 5 
and the Supplicant during authentication. Each EAP method may derive the PMK from the Master Key in a 6 
different way. 7 

If the protocol between the Authenticator or AP and Authentication Server is RADIUS then the MS-MPPE-8 
Recv-Key attribute (vendor-id = 17; see RFC 2548 Section 2.4.3) is used to transport the Pairwise Master 9 
Key (PMK) to the AP. If the RADIUS Session-Timeout value is defined, the PMK and any derived keys 10 
shall not be used any longer than 11 

Session-Timeout + (reAuthMax × dot1xAuthTxPeriod) 12 

seconds. dot1xAuthTxPeriod is defined by IEEE 802.1X, while reAuthMax is an IEEE 802.11 MIB variable 13 
defined in Annex D.  When RADIUS is used, and when the Radius Session-Timeout attribute is not in the 14 
RADIUS Accept message, the PMK lifetime is infinite. 15 

Informative Note: If the authenticated key management protocol is RSN-PSK then a 256-bit pre-shared key is 16 
configured into the STA and AP. The method used to configure the PSK is outside this specification, but one 17 
method is via user interaction. The pre-shared key is used directly as the PMK. 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

Figure 46—Pairwise key hierarchy 29 

Here 30 

• SNonce shall be a random or pseudo-random value contributed by the IEEE 802.1X Supplicant;. 31 

• ANonce shall be a random or pseudo-random value contributed by the IEEE 802.1X 32 
Authenticator. 33 

• The Pairwise Transient Key (PTK) shall be derived from the PMK by 34 

PTK ← PRF-X(PMK, “Pairwise key expansion”, Min(AA,SA) || Max(AA, SA) || 35 
Min(ANonce,SNonce) || Max(ANonce,SNonce)) 36 

Pairwise Master 
Key (PMK) 

PRF-X(PMK, “Pairwise key expansion”, Min(AA,SA) 
|| Max(AA,SA) || Min(ANonce,SNonce) || 
Max(ANonce,SNonce)) 

Pairwise Transient Key (PTK) 
(X bits) 

EAPOL-Key 
MIC Key 

L(PTK,0,128) 
(MK) 

EAPOL-Key 
Encrption Key 

L(PTK,128,128) 
(EK) 

Temporal Key 1 
L(PTK,256,128) 

(TK 1) 

 
… 
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TKIP uses X = 512, while CCMP, WRAP, and WEP use X = 384. The Min and Max operations 1 
are with respect to lexicographic ordering of IEEE 802 addresses and the bit strings comprising the 2 
nonces, represented as in 7.1.1. 3 

Informative Note: ANonce is taken from the Key Counter on the Authenticator whenever a new Pairwise TK 4 
is derived. ANonce is used so the inputs to PRF are different for each PMK. If a station re-associates to the 5 
same AP, a different ANonce value is used for the derivation of a new TK set. 6 

Informative Note: SNonce is a nonce taken from the Key Counter on the Supplicant; its value is taken when a 7 
PTK is instantiated and is sent to the PTK Authenticator. 8 

 Informative Note: The Authenticator and Supplicant normally derive a PTK only once per association. A 9 
Supplicant or an Authenticator may use the 4-way handshake to derive a new PTK. This is required only after 10 
a TKIP data integrity failure. Both the Authenticator and Supplicant create a new nonce value for each 4-way 11 
handshake instance. 12 

• The EAPOL-Key MIC key (MK) shall be computed as the first 128 bits (bits 0-127) of the PTK: 13 

MK ← L(PTK, 0, 128) 14 

The MK is used by IEEE 802.1X to provided data origin authenticity in the 4-way handshake and 15 
Group key distribution messages. 16 

• The EAPOL-Key Encr. Key (EK) shall be computed as bits 128-255 of the PTK: 17 

EK ← L(PTK, 128, 128) 18 

The EK is used by IEEE 802.1X to provide confidentiality in the 4-way handshake and Group key 19 
distribution messages. 20 

• Temporal Key 1 (TK1) shall be computed as bits 256-383 of the PTK: 21 

TK1 ← L(PTK, 256, 128) 22 

TK1 shall be configured by IEEE 802.1X into IEEE 802.11 via the MLME-SETKEYS.request, to 23 
be consumed in the pairwise key cipher suite; interpretation of this value is cipher suite specific. 24 

• Temporal Key 2 (TK2), if derived, shall be computed as bits 384-511 of the PTK: 25 

TK2 ← L(PTK, 384, 128) 26 

TK2 shall be configured by IEEE 802.1X into IEEE 802.11 via the MLME-SETKEYS.request, to 27 
be consumed in the pairwise key cipher suite; interpretation of this value is cipher suite specific. 28 

8.5.1.3  Group key hierarchy 29 

The Group key hierarchy uses PRF-128 or PRF-256 to derive a group key. Figure 47 depicts the 30 
relationship among the keys of the Group key hierarchy. The Group key hierarchy takes a Group Master 31 
Key and generates a Group Transient key. The GTK is partitioned into temporal keys used by the MAC to 32 
protect broadcast/multicast communication. Group Keys are used between a single Authenticator and all 33 
Supplicants authenticated to that Authenticator. The Authenticator may derive new Group Transient Keys 34 
when it wants to update the Group temporal keys. 35 

The Group Master Key (GMK) shall be 256 bits. It is used to derive the Group key hierarchy. The GMK  36 
shall be initialized using a cryptographically secure random number. 37 
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Any GMK must be re-initialized at a time interval configured into the AP, to reduce the exposure of data if 1 
the GMK is ever compromised. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

Figure 47—Group key hierarchy 14 

Here 15 

• GNonce shall be a random or pseudo-random value contributed by the IEEE 802.1X 16 
Authenticator. 17 

• The Group Transient Key (GTK) shall be derived from the GMK by 18 

GTK ← PRF-X(GMK, “Group key expansion” || AA || GNonce) 19 

TKIP uses X = 256, while CCMP, WRAP, and WEP use X = 128. AA is represented as an IEEE 20 
802 address and GNonce as a bit string as defined in 7.1.1. 21 

• Temporal Key 1 (TK1) shall be bits 0-127 of the GTK: 22 

TK1 ← L(GTK, 0, 128) 23 

IEEE 802.1X configures TK1 into IEEE 802.11 via the MLME-SETKEYS.request, and IEEE 24 
802.11 uses this key. Its interpretation is cipher suite specific. 25 

• Temporal Key 2 (TK2), if derived, shall be bits 128-255 of the GTK: 26 

TK2 ← L(GTK, 128, 128) 27 

IEEE 802.1X configures TK1 into IEEE 802.11 via the MLME-SETKEYS.request, and IEEE 28 
802.11 uses this key. Its interpretation is cipher suite specific. 29 

Informative Note: The Authenticator may update the Group key for a number of reasons: 30 

PRF-X(GMK, “Group key expansion”, AA || Gnonce)  

Group Master 
Key (GMK) 

Group Transient Key (GTK) 
(X bits) 

Temporal Key 1  
L(PTK,0,128) 

(TK1) 

 
… 
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1. The Authenticator may change the GTK on disassociation or Deauthentication of a STA.. 1 

2. A TKIP integrity failure shall trigger a Group key update. 2 

3. A management event can trigger a Group key update. 3 

8.5.2  EAPOL-KEY messages 4 

IEEE 802.11 uses EAPOL-Key messages to exchange information between STAs’ Supplicants and 5 
Authenticators that result in cryptographic keys and synchronization of security association state. EAPOL-6 
Key messages are used to implement two different exchanges: 7 

• 4-way handshake, to confirm that the PMK between associated STAs are the same and is live. 8 

• The group key handshake, to update the GTK at the STA. 9 

When used by an RSN, the RSN key descriptor carried by EAPOL-Key messages differs from IEEE 10 
802.1X Clause 7.6, because it needs to convey different information and replaces the IEEE 802.1X Key 11 
descriptor. 12 

The bit and octet convention for fields in the EAPOL-Key message are defined in IEEE 802.1X Clause 7.1. 13 

 14 

Descriptor Type – 1 octet 

Key Information – 2 
octets 

Key Length – 2 octets 

Replay Counter – 8 octets 

Key Nonce – 32 octets 

EAPOL-Key IV – 16 octets 

Key RSC – 8 octets 

Key ID – 8 octets 

Key MIC – 16 octets 

Key Material Length – 
2 octets 

Key Data – n octets 

 15 

Figure 48—EAPOL-Key descriptor 16 

Descriptor Type. This field is one octet and has a value of 254, identifying RSN Key Descriptor. 17 

Key Information. This field is two octets and specifies characteristics of the key. 18 

 19 
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3 bits Key 
Descriptor 

Version  

1 bit 
Key 
Type  

2 bits 
Key 

Index  

1 bit 
Install  1 bit 

Key 
Ack  

1 bit 
Key 
MIC  

1 bit 
Secure  

1 bit 
Error  

1 bit 
Request 

4 bits 
Reserved  

 1 

Figure 49—Key information bit layout 2 

The bit convention used is as in 7.1 of IEEE 802.1X. 3 

• Key Description Version Number (bits 0-2): specifies the Key descriptor version type. 4 

1. Type 1 indicates 5 

a) HMAC-MD5 is the EAPOL-Key MIC; 6 

b) RC4 is the EAPOL-Key encryption algorithm used to protect the distributed GTK. 7 

2. Type 2 indicates. 8 

a) AES-CBC-MAC is the EAPOL-Key MIC; 9 

b) HMAC-SHA1 is the EAPOL-Key encryption algorithm used to protect the 10 
distributed GTK. HMAC is defined in RFC 2104, and SHA1 by FIPS-180-1. The 11 
output of the HMAC-SHA1 shall be truncated to 128-bits. 12 

• Key Type (bit 4): specifies whether this EAPOL-Key message represents a Pairwise or a Group 13 
key. 14 

1. The value 1 indicates a Pairwise key 15 

2. The value 0 indicates a Group key. 16 

• Key Index (bits 5 and 6): specifies the key id of the temporal key of the key derived from the 17 
message. The value of this shall be zero (0) if the value of Key Type (bit 4) is Pairwise (1). The 18 
Key Type and Key Index shall not both be 0 in the same message. 19 

Group keys shall not use key id 0. This means that key ids 1 to 3 are available to be used to 20 
identify Group keys. This document recommends that implementations reserve key ids 1 and 2 21 
for Group Keys, and that key id 3 is not used. 22 

The Key Type and Key Index shall not both be 0 in the same message. 23 

• Bit 7 is the Install flag. 24 

1. If the value of Key Type (bit 4) is Pairwise (1), then 25 

a. The value 1 means the IEEE 802.1X component shall configure the temporal keys 26 
TK1 and TK2 derived from this message into its IEEE 802.11 STA. 27 

b. The value 0 means the IEEE 802.1X component shall not configure the temporal 28 
keys into the IEEE 802.11 STA. 29 
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2. If the value of Key Type (bit 4) is Group (0), then 1 

a. The value 1 means the IEEE 802.1X component shall configure the temporal keys 2 
TK1 and TK2 derived from this message into its IEEE 802.11 STA for both 3 
transmission and reception. 4 

b. The value 0 means IEEE 802.1X component shall configure the temporal keys TK1 5 
and TK2 derived from this message into its IEEE 802.11 STA for reception only. 6 

• Ack (bit 8): This bit is set in messages from the Authenticator if an EAPOL-Key message is 7 
required in response to this message, and clear otherwise. The Supplicant’s response to this 8 
message shall use the same replay counter as this message. 9 

• MIC (bit 9): this bit is set if a MIC is in this EAPOL-Key message, and it is clear if this message 10 
contains no MIC. 11 

• Secure (bit 10): this bit is set once the initial key exchange is complete. That is, the secure bit in 12 
the EAPOL-Key message is used to inform when the pairwise key exchange is complete and the 13 
first Group Key Handshake is complete. It shall be initialized to 0 or not secure at the beginning 14 
of any 4-Way Handshake. 15 

The Authenticator shall set this bit to 1 in the final EAPOL-Key message that the Supplicant with 16 
the data needed to complete its initialization. At this point the Authenticator shall set the bit in all 17 
EAPOL-Key messages it sends until it no longer considers the link secure. 18 

The Supplicant will set the secure bit when it considers the link secure, which is when it has 19 
accepted enough keys to initialize the link. The number of keys should match the negotiated 20 
ciphers e.g. if a unicast and multicast cipher is negotiated then a Pairwise and Group key must be 21 
sent before the link is considered secure. The Supplicant shall clear the secure bit when it 22 
considers the link no-longer secure. 23 

The Supplicant and Authenticator shall consider the link insecure after a TKIP integrity error but 24 
prior to keys being re-established. 25 

Informative Note: The Supplicant and Authenticator initialize the secure bit to zero. Normally the 26 
Authenticator sets the secure bit when it sends the first Group key message to the Supplicant and the 27 
Supplicant sets the secure bit on receiving the first Group key message. The Supplicant clears the secure bit 28 
on receiving a TKIP integrity error from the MAC or on receiving an EAPOL-Key message with the secure 29 
bit cleared. The Authenticator clears the secure bit on receiving a TKIP integrity error from the Supplicant 30 
or from its STA. 31 

• Error (bit 11): A Supplicant sets this bit to report that a MIC failure occurred in a TKIP MSDU. 32 
A Supplicant shall set this bit only when the Request (bit 12) is set. 33 

• Request (bit 12): The Supplicant sets this bit to request that the Authenticator initiate either a 4-34 
way or group key handshake. The Supplicant shall not set this bit in on-going 4-way handshakes, 35 
i.e., the Ack bit (bit 8) shall not be set in any message with the Request bit set. The Authenticator 36 
shall never set this bit. 37 

If the EAPOL-Key message with request bit set has a Key Type of Pairwise key, the 38 
authenticator shall initiate a 4-way handshake. If the EAPOL-Key message with request bit set 39 
has a key type of Group key, the authenticator shall change the Group key, initiate a 4-way 40 
handshake with the Supplicant and then execute the Group key handshake to all Supplicants. 41 

Informative Note: The Supplicant shall request a new key in response to any TKIP MIC failure. 42 
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• Reserved (bits 13-15). The sender shall set them to 0, and the receiver shall ignore the value of 1 
these bits. 2 

Key Length. This field is two (2) octets in length, represented as an unsigned binary number. The value 3 
defines the length in octets of the key to configure into IEEE 802.11.  4 

Informative Note: The rationale for this design is to hide from IEEE 802.1X the structure of the keys consumed 5 
by IEEE 802.11. 6 

Informative Note: For Group Keys, the Key Data Length will be the same as the Key Length field for Key 7 
Descriptor Version 1 and Key Length + 8 octets for Key Descriptor Version 2. 8 

Key Replay Counter. This field is eight (8) octets, represented an unsigned binary number, and is 9 
initialized to 0 when the PMK is established. The Supplicant shall use the replay counter in the 10 
received EAPOL-Key message when responding to an EAPOL-Key message. It carries a sequence 11 
number that the protocol uses to detect replayed EAPOL-Key messages. 12 

The Supplicant and Authenticator shall track the Replay Counter per association. The replay counter 13 
shall be initialized to 0 on (re)association. The Authenticator shall increment the replay counter on 14 
each EAPOL-Key message. 15 

When replying to a message from the Authenticator the Supplicant should use the replay counter 16 
received from the Authenticator. The Authenticator should use this to identify invalid messages to 17 
silently discard. The Supplicant should also use the replay counter and ignore EAPOL-Key messages 18 
with a replay counter smaller than any received in a valid message. The local replay counter should 19 
not be updated until the after EAPOL-Key MIC is checked and is valid. This means that the 20 
Supplicant never updates the replay counter for the first message in the 4-way handshake, as it 21 
includes no MIC. This implies the Supplicant must allow for re-transmission of the first message 22 
when checking for the replay counter of the third message. 23 

The Supplicant shall maintain a separate replay counter for sending request EAPOL-Key messages to 24 
the Authenticator; the Authenticator also shall enforce monotonicity of a separate replay counter to 25 
filter received EAPOL-Key Request messages.   26 

Informative Note: The Replay Counter does not play any role beyond a performance optimization in the 4-way 27 
handshake. In particular, replay protection is provided by selecting a never-before-used nonce value to 28 
incorporate into the PTK. It does, however, play a useful role in the Group key handshake. 29 

Key Nonce. This field is thirty two (32) octets. It conveys the ANonce or GNonce from the Authenticator 30 
and the SNonce from the Supplicant. It may contain 0 if a Nonce is not required to be sent. 31 

Key IV. This field is sixteen (16) octets. It contains the IV used with the key encrypting the Group Key. It 32 
may contain 0 when an IV is not required, i.e., when the message specifies a pairwise key. It should be 33 
initialized by taking the current value of the global Counter and then incrementing the counter. Note 34 
that only the lower sixteen octets of the counter value will be used. 35 

Key RSC. This field is eight octets in length. It contains the receive sequence counter (RSC) for the key 36 
being installed in IEEE 802.11. It is only used in message 3 of the 4-way handshake and the first 37 
message of the Group key update, where it is used to synchronize the replay state. It shall contain 0 in 38 
other messages. If the key RSC is less than eight octets in length the remaining octets shall be set to 0. 39 
The least significant octet of the IV should be in the first octet of the Key RSC. 40 

Informative Note: The Key RSC for TKIP is the TSC in the first 6 octets. 41 

 42 

 43 
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KeyRSC 0 KeyRSC 1 KeyRSC 2 KeyRSC 3 KeyRSC 4 KeyRSC 5 KeyRSC 6 KeyRSC 7 

TSC0 TSC1 TSC2 TSC3 TSC4 TSC5 0 0 

Informative Note: The Key RSC for WEP should be 0. 1 

Key ID. This field is eight (8) octets in length. It is reserved and set to 0. 2 

Key MIC. This field is sixteen octets (16) in length when the Key Descriptor Version field is 1 or 2. The 3 
EAPOL-Key MIC is a MIC of the EAPOL packet, from and including the EAPOL protocol version 4 
field, to and including the EAPOL-Key Material field with the EAPOL-Key MIC field set to 0 after 5 
any key material field is encrypted. If the Key data field contains a Group Key, the GTK is encrypted 6 
prior to calculation of the MIC. 7 

Key Descriptor Version 1: HMAC-MD5; RFCs 2104 and 1321 together define this function, and 8 
Annex F.3 provides a reference implementation for it. 9 

Key Descriptor Version 2: HMAC-MD5. 10 

Key Data Length. This field is two (2) octets in length, taken to represent an unsigned binary number. This 11 
represents the length of the Key Data field in octets. 12 

For Pairwise Keys, the Key Data Length value will be zero (0) in messages 1 and 4 of the 4-way 13 
handshake, and will be the length in octets of RSN IEs conveyed in the Key Data field in messages 2 14 
and 3. 15 

For Group Keys, the Key Data Length will be the same as the Key Length field. 16 

Key Data. For EAPOL-Key messages specifying Pairwise Keys the Key Data field will contain the RSN 17 
information element in message 2 and 3 of the 4-way handshake and nothing for message 1 and 4.  18 

For Pairwise keys this field contains the RSN information element contents (from and including the 19 
RSN element id) and the Key Data Length is set to the length of the information element contents for 20 
message 2 and 3 in the 4-way handshake. In message 1 and 4 this field is empty and the Key Data 21 
Length is 0. The RSN information element will not be encrypted when it is sent in the EAPOL-Key 22 
message. 23 

The Supplicant should insert the RSN IE it sent in its (re)associate request into the second message 24 
of the 4-way handshake. On receipt of the second message the Authenticator shall bit-wise compare 25 
this against the RSN IE received in the IEEE 802.11 request. 26 

The Authenticator should insert the RSN IE it sent in its Beacon or Probe Response into the third 27 
message of the 4-way handshake. On receiving the third message, the Supplicant shall bit-wise 28 
compare the RSN IE against the RSN IE received in the Beacon or Probe Response. 29 

In either case, if the values do not match, then the receiver shall consider the RSN IE modified and 30 
shall use the MLME-DEAUTHENTICATE.request to break the association. A security error should 31 
be logged at this time.  32 

For Group TKs this field contains the encrypted GTK.  33 
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Note that when checking the RSN information element the length of the RSN information element 1 
received in the beacon or probe response and sent in the associate request must be checked against 2 
the length of the RSN information element specified in EAPOL-Key Data Length. 3 

Key Descriptor Version 1: RC4 is used to encrypt the Key Data field using the EK field from the 4 
derived PTK. No padding shall be used. The encryption key is generated by concatenating the 5 
EAPOL-Key IV field and the EK. The first 256 bytes of the RC4 key stream shall be discarded 6 
following RC4 stream cipher initialization with the EK, and encryption begins using the 257th key 7 
stream byte. 8 

Key Descriptor Version 2: AES Key Wrap, defined in RFC 3394, shall be used to encrypt the key 9 
material field using the EK field from the derived PTK. The key wrap default initial value shall be 10 
used. 11 

8.5.2.1 EAPOL-Key message notation (Informative) 12 

The following notation will often be used throughout to represent EAPOL-Key messages: 13 

EAPOL-Key(S, M, A, T, N, K, KeyRSC, ANonce/SNonce, GNonce, MIC, GTK) 14 

where the arguments are: 15 

• S: Initial Key exchange is complete. This is the EAPOL-Key Information Secure bit. 16 

• M: MIC is available in message. This should be set in all messages except the first 4-way 17 
handshake message. This is the EAPOL-Key Information Key MIC bit. 18 

• A: Response is required to this message. Used when the receiver should respond to this message. 19 
This is the EAPOL-Key Information Key Ack bit. 20 

• T: Tx/Rx for Group key and Install/Not install for Pairwise key. This is the EAPOL-Key 21 
Information Tx/Rx Flag bit. 22 

• N: Key Index. Specifies which index should be used for this Group Key. Index 0 shall not be 23 
used for Group keys. This is the EAPOL-Key Information key index bits. 24 

• K: Key type - P (Pairwise), G (Group). This is the EAPOL-Key Information Key Type bit. 25 

• KeyRSC: Key RSC. This is the EAPOL-Key KeyRSC field. 26 

• ANonce/SNonce/GNonce: Authenticator/Supplicant/Group Nonce. This is the EAPOL-Key Key 27 
Nonce field. 28 

• MIC: Integrity check which is generated using the EAPOL-Key MIC Key. This is the EAPOL-29 
Key MIC field.  30 

• GTK: Group temporal key which is encrypted using the EAPOL-Key Encryption Key. This is the 31 
EAPOL-Key Data field. 32 

8.5.3  4-way handshake 33 

RSN defines an IEEE 802.1X protocol called the 4-way handshake. The 4-way handshake confirms the 34 
liveness of the STAs communicating directly with each other over the IEEE 802.1l link, guarantees the 35 
freshness of the their shared session key, binds the PMK to the MAC addresses of the communicating 36 
STAs, and synchronizes the usage of the key to secure the IEEE 802.11 link. The handshake completes the 37 
IEEE 802.1X authentication process. The information flow of the 4-way handshake is 38 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  98

1. Authenticator → Supplicant: EAPOL-Key(0,0,1,0,0,P,0,ANonce,0,0) 1 

2. Supplicant → Authenticator: EAPOL-Key(0,1,0,0,0,P,0,SNonce,MIC,RSN IE)  2 

3. Authenticator → Supplicant: EAPOL-Key(0,1,1,1,0,P,IV,ANonce,MIC,RSN IE) 3 

4. Supplicant → Authenticator: EAPOL-Key(0,1,0,0,0,P,0,0,MIC,0) 4 

Here 5 

• EAPOL-Key(⋅) denotes an EAPOL-Key message conveying the specified argument list, using the 6 
notation introduced in 8.5.2.1. 7 

• ANonce is a nonce the Authenticator contributes. ANonce has the same value in messages 1 and 3. 8 

• SNonce is a nonce from the Supplicant. It assumes the same values in messages 2 and 4. 9 

• P means the pairwise bit is set. 10 

• MIC is computed over the body of the containing EAPOL-Key message (with the MIC field first 11 
zeroed before the computation) using the key MK defined in 8.5.1.2. 12 

• RSN IE represents the appropriate RSN IEs. 13 

Informative Note: While the MIC calculation is the same in each direction the Ack bit is different in each 14 
direction It is set in messages from the Authenticator and not set in messages from the Supplicant. 4-way 15 
handshake requests from the Supplicant have the Request bit set. The Authenticator and Supplicant must check 16 
these bits to stop reflection attacks. 17 

8.5.3.1 Message 1 18 

Message 1 uses of the following values for each of the EAPOL-Key message fields 19 

Descriptor Type = 254 20 

Key Information. 21 
Version = 1 (RC4 encryption with HMAC-MD5) or 2 (AES-128-CBC encryption with 22 
AES-128-CBC-MAC) 23 
Key Type = 1 (Pairwise) 24 
Key Index = 0 – Pairwise keys use KeyID 0 25 
Install flag = 0 26 
Key Ack = 1 27 
Key MIC = 0 28 
Secure = 0 29 
Error = 0 30 
Request = 0 31 
Reserved = 0 – unused by this protocol version 32 

Key Length = 16 – all 802.11 keys are 16 octets in length 33 

Key Replay Counter = n – to allow Authenticator to match the right Message 2 from Supplicant 34 

Key Nonce = ANonce 35 

Key IV = 0 – unused by the 4-way handshake 36 

Key RSC = 0 37 

Key ID = 0 – reserved 38 
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Key MIC = 0 1 

Key Data Length = 0 2 

Key Data = 0. 3 

The Authenticator sends Message 1 to the Supplicant. On reception of message 1, the Supplicant determines 4 
whether the Replay Counter has been used before with the current security association. If the Replay 5 
Counter is less than or equal the current local value, the Supplicant discards the message. Otherwise the 6 
Supplicant 7 

1. generates a new nonce SNonce, 8 

2. derives PTK, and 9 

3. constructs Message 2. 10 

8.5.3.2 Message 2 11 

Message 2 uses of the following values for each of the EAPOL-Key message fields 12 

Descriptor Type = 254 13 

Key Information. 14 
Version = 1 (RC4 encryption with HMAC-MD5) or 2 (AES-128-CBC encryption with 15 
AES-128-CBC-MAC) – same as Message 1 16 
Key Type = 1 (Pairwise) – same as Message 1 17 
Key Index = 0 – same as Message 1 18 
Install flag = 0 19 
Key Ack = 0 20 
Key MIC = 1 21 
Secure = 0 – Same as Message 1 22 
Error = 0 – Same as Message 1 23 
Request = 0 – Same as Message 1 24 
Reserved = 0 – unused by this protocol version 25 

Key Length = 16 – same as Message 1  26 

Key Replay Counter = n – To let the Authenticator knows which Message 1 this corresponds to. 27 

Key Nonce = SNonce 28 

Key IV = 0 – unused by the 4-way handshake 29 

Key RSC = 0 30 

Key ID = 0 – reserved 31 

Key MIC = MIC(MK, EAPOL) – MIC computed over the body of this EAPOL-Key message with 32 
the Key MIC field first initialized to 0. 33 

Key Data Length = length in octets of included RSN IE 34 

Key Data = included RSN IE – in a BSS, the STA’s RSN IE 35 

The Supplicant sends Message 2 to the Authenticator. 36 

On reception of message 2, the Authenticator checks that the Replay Counter corresponds to the outstanding 37 
Message 1. If not, it silently discards the message. Otherwise, the Authenticator 38 

1. derives PTK and 39 
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2. verifies the Message 2 MIC. If the MIC is not valid, the Authenticator silently discards the packet. 1 
If the MIC is valid, the Authenticator 2 

3. checks that the RSN IE bit-wise matches that from the (re)association request message. If these are 3 
not exactly the same, the Authenticator uses MLME-DEAUTHENTICATE.request to terminate 4 
the association. If they do match bit-wise, the Authenticator 5 

4. constructs message 3. 6 

8.5.3.3 Message 3 7 

Message 3 uses of the following values for each of the EAPOL-Key message fields 8 

Descriptor Type = 254 9 

Key Information. 10 
Version = 1 (RC4 encryption with HMAC-MD5) or 2 (AES-128-CBC encryption with 11 
AES-128-CBC-MAC) – same as Message 1 12 
Key Type = 1 (Pairwise) – same as Message 1 13 
Key Index = 0 – Same as Message 1 14 
Install = 0/1 – 0 only if AP does not support key mapping keys 15 
Key Ack = 1 16 
Key MIC = 1 17 
Secure = 0 (Group key handshake to come) or 1 (no group key handshake) 18 
Error = 0 – same as Message 1 19 
Request = 0 – same as Message 1 20 
Reserved = 0 – unused by this protocol version 21 

Key Length = 16  22 

Key Replay Counter = n – which transaction does this belong to? 23 

Key Nonce = ANonce – same as Message 1 24 

Key IV = 0 – unused by the 4-way handshake 25 

Key RSC = starting sequence number Authenticator’s STA will use in packets protected by PTK 26 
(normally 0) 27 

Key ID = 0 – reserved 28 

Key MIC = MIC(MK, EAPOL) – MIC computed over the body of this EAPOL-Key message with 29 
the Key MIC field first initialized to 0. 30 

Key Data Length = length in octets of included RSN IE 31 

Key Data = included RSN IE – in a BSS, the AP’s Beacon/Probe RSN IE 32 

The Authenticator sends Message 3 to the Supplicant. 33 

On reception of message 3, the Supplicant verifies the Replay Counter is not an already used value or the 34 
ANonce differs from that in Message 1. If so, it silently discards the message. Otherwise, the Supplicant 35 

1. verifies the Message 3 MIC. If this is invalid, the Supplicant silently discards. Otherwise the 36 
Supplicant  37 

2. updates the last-seen value of the Replay Counter, 38 

3. constructs Message 4, 39 

4. sends Message 4 to the Authenticator, and 40 
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5. uses the MLME-SETKEYS.request to configure the IEEE 802.11 to send and receive class 3 1 
unicast MPDUs protected by the PTK, 2 

Informative Note: after configuring the PTK into the IEEE 802.11 MAC, the STA must still be able to 3 
receive Message 3 in the clear, to handle the case where its Message 4 does not arrive at the AP.  4 

Informative Note: If Message 4 is lost and the Authenticator retries Message 3, then the STA will resend the 5 
response protected by the temporal key as well as the MK. 6 

8.5.3.4 Message 4 7 

Message 4 uses of the following values for each of the EAPOL-Key message fields 8 

Descriptor Type = 254 9 

Key Information. 10 
Version = 1 (RC4 encryption with HMAC-MD5) or 2 (AES-128-CBC encryption with 11 
AES-128-CBC-MAC) – same as Message 1 12 
Key Type = 1 (Pairwise) – same as Message 1 13 
Key Index = 0 14 
Install = 0 15 
Key Ack = 0 – This is the last message 16 
Key MIC = 1 17 
Secure = 0 or 1 – same as Message 3 18 
Error = 0 19 
Request = 0 20 
Reserved = 0 – unused by this protocol version 21 

Key Length = 16  22 

Key Replay Counter = n – which transaction does this belong to? 23 

Key Nonce = 0 – not used in Message 4. 24 

Key IV = 0 – unused by the 4-way handshake 25 

Key RSC = starting sequence number Supplicant’s STA will use in packets protected by PTK 26 
(normally 0) 27 

Key ID = 0 – reserved 28 

Key MIC = MIC(MK, EAPOL) – MIC computed over the body of this EAPOL-Key message with 29 
the Key MIC field first initialized to 0. 30 

Key Data Length = 0 31 

Key Data = 0. 32 

The Supplicant sends Message 4 to the authenticator. Note that it is protected by the agreed upon temporal 33 
key as well as the PTK. 34 

On receipt, the Authenticator verifies that the Replay Counter value is one that it used on this 4-way 35 
handshake; if it is not, it silently discards the message. Otherwise, the Authenticator 36 

1. checks the MIC, and if invalid, silently discards the packet; if it is valid, the Authenticator 37 
otherwise 38 

2. uses the MLME-SETKEYS.request to configure the PTK into the IEEE 802.11 MAC. 39 

3. The Authenticator finally updates the Replay Counter, so that it will use a fresh value if a rekey 40 
becomes necessary. 41 
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8.5.3.5 4-way handshake implementation considerations 1 

If the Authenticator does not receive a reply to its messages, its AP shall retry up to three times at one 2 
second intervals; if it still has not received a response after these retries, then the Authenticator’s AP should 3 
disassociate the STA. 4 

If the STA does not receive the initial message when it expects to, it should disassociate, deauthenticate, 5 
and try another AP/STA.  6 

Informative Note: The timeout should be larger than the short retry timeout. 7 

The Authenticator should ignore EAPOL-Key messages it is not expecting in reply to messages it has sent 8 
or EAPOL-Key messages with the Ack bit set. This stops an attacker from sending the first message to the 9 
supplicant who responds to the Authenticator. 10 

An implementation should save the EAPOL-Key MIC key MK and EAPOL-Key encryption key TK beyond 11 
the 4-way handshake, as they are needed by the Group Key handshake and to recover from TKIP MIC 12 
failures. 13 

The Supplicant uses the MLME-SETKEYS.request to configure the temporal keys TK1, TK2, … from 14 
8.5.1 into its STA after sending Message 4 to the Authenticator. 15 

Informative Note: If the RSN IE check for the second or third message fails, IEEE 802.1X should log an 16 
error and deauthenticate the peer. 17 

Informative Note: The Supplicant should check that if the RSN IE specifies a unicast cipher is used then the 18 
4-way handshake did specify that the Pairwise key is configured to the encryption/integrity engine. 19 

8.5.3.6  Example 4-way handshake (Informative) 20 

802.11 Station
802.1X Supplicant

802.11Access Point
802.1X Authenticator

EAPOL-Key (0, 1, 1, 1, 0, P, KeyIV, ANonce, MIC, SSN IE)

Set Temporal Encryption and MIC Keys from PTK in Key
index for Tx/Rx

Set Temporal Encryption and MIC Keys from PTK in
Key index for Tx/Rx

EAPOL-Key (0, 0, 1, 0, 0, P, 0, ANonce, 0, 0)

Calculate PTK using ANonce and SNonce

EAPOL-Key (0, 1, 0, 0, 0, P, 0, SNonce, MIC, SSN IE)

Calculate PTK using ANonce and SNonce

ANonce = Get next Key Counter

EAP-Success

SNonce = Get next Key Counter

EAPOL-Key (1, 1, 1, 0, Key Index, G, KeyIV, GNonce, MIC, GTK)

EAPOL-Key (0, 1, 0, 0, 0, G, 0, 0, MIC, 0)

EAPOL-Key (0, 1, 0, 0, 0, P, 0, 0, MIC, 0)

 21 

Figure 50—Example 4-way handshake 22 

After IEEE 802.1X authentication per se completes by the AP sending an EAP-Success, the AP initiates 23 
two Key exchanges: the 4-way handshake and the Group key handshake. The 4-way handshake consists of: 24 
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1. The Authenticator sending an EAPOL-Key message containing an ANonce. 1 

2. The Supplicant derives a PTK from ANonce and SNonce. 2 

3. The Supplicant sends an EAPOL-Key message containing SNonce, the RSN information element 3 
from the (Re)associate request, and a MIC. 4 

4. The Authenticator derives PTK from ANonce and SNonce and validates the MIC in the EAPOL-5 
Key message. 6 

5. The Authenticator sends an EAPOL-Key message containing ANonce, the RSN IE from its 7 
Beacon or Probe Response messages, MIC, and whether to install the temporal keys. 8 

6. The Supplicant sends an EAPOL-Key message to confirm that the temporal keys are installed. 9 

The AP typically follows this with the initial Group key update. 10 

Informative Note: Step 6 could be eliminated from the protocol when Pairwise keys are not being used for 11 
encryption/integrity, but for consistency it has been included in all cases. 12 

Informative Note: The “Initial exchange complete” bit is set in the last message from the Authenticator to the 13 
Supplicant to inform the Supplicant that the last key required to initialize the Supplicant has been sent. Once 14 
set the “Initial exchange complete” bit should be set in any EAPOL-Key messages from the Authenticator 15 
until a 4-way handshake is initiated. 16 

8.5.3.7  4-way handshake analysis (Informative) 17 

First we want to make the trust assumptions explicit. The protocol assumes the PMK is known only by the 18 
Supplicant’s STA and the Authenticator’s STA, and that the Supplicant’s STA uses IEEE 802 address SA, 19 
and the Authenticator’s STA uses IEEE 802 address AA. In many instantiations the RSN architecture 20 
immediately breaks the first assumption, since the IEEE 802.1X AS also knows the PMK. Therefore, we 21 
require additional assumptions (a) the AS does not expose the PMK to other parties, (b) the AS does not 22 
masquerade as the Supplicant to the Authenticator, (c) the AS does not masquerade as the Authenticator to 23 
the Supplicant, (d) the AS does not masquerade as the Supplicant’s STA, and (e) the AS does not 24 
masquerade as the Authenticator’s STA. The protocol also assumes this particular Supplicant/Authenticator 25 
pair are authorized to know this PMK and to use it in the 4-way handshake. If any of these assumptions are 26 
broken, then the protocol fails to provide any security guarantees. 27 

The protocol also assumes that the AS delivers the correct PMK to the AP with IEEE 802 address AA, and 28 
that the non-AP STA with IEEE 802 address AP hosts the Supplicant that negotiated the PMK with the AS. 29 
None of the protocols defined by IEEE 802.11 and IEEE 802.1X permit the AS, the Authenticator, the 30 
Supplicant, or either STA to verify these assumptions. 31 

The protocol supplies no mechanism to identify the correct PMK to use. This implies that a STA must 32 
negotiate a new PMK each time it visits an AP. 33 

The PTK derivation step 34 

PTK ← PRF-X(PMK, “Pairwise key expansion” || Min(AA,SA) || Max(AA, SA) || 35 
Min(ANonce,SNonce) || Max(ANonce,SNonce)) 36 

performs a number of functions: 37 

• Including the AA and SA in the computation (1) binds the PTK to the communicating STAs and 38 
(2) prevents undetected man-in-the-middle attacks against 4-way handshake messages between the 39 
STAs with these two IEEE 802 addresses. 40 
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• If ANonce is randomly selected, including ANonce (1) guarantees the STA at IEEE 802 address 1 
AA that PTK is fresh, (2) that Messages 2 and 4 are live, and (3) uniquely identifies PTK as <AA, 2 
ANonce>. 3 

• If SNonce is randomly selected, including SNonce (1) guarantees the STA at IEEE 802 address SA 4 
that PTK is fresh, (2) that Message 3 is live, and (3) uniquely identifies PTK as <SA, SNonce>. 5 

Choosing the nonces randomly helps prevent pre-computation attacks. With unpredictable nonces, a man-6 
in-the-middle attack that uses the Supplicant to pre-compute messages to attack the Authenticator cannot 7 
progress beyond Message 2, and a similar attack against the Supplicant cannot progress beyond Message 3. 8 
The protocol can be executed further if predictable nonces are used. 9 

Message 1 delivers ANonce to the Supplicant and initiates negotiation for a new PTK. It identifies AA as 10 
the peer STA to the Supplicant’s STA. If an adversary modifies either of the addresses or ANonce, the 11 
Authenticator will detect the result when validating the MIC in Message 2. Message 1 does not carry a 12 
MIC, as it is impossible for the Supplicant to distinguish this message from a replay without maintaining 13 
state of all security associations through all time (PMK might be a static key). 14 

Message 2 delivers SNonce to the Authenticator, so it can derive the PTK. If the Authenticator selected 15 
ANonce randomly, Message 2 also demonstrates to the Authenticator that the Supplicant is live, the PTK is 16 
fresh, and that there is no man-in-the-middle, as the PTK includes the IEEE 802 MAC addresses of both. 17 
Inclusion of ANonce in the PKT derivation also protects against replay. The MIC prevents undetected 18 
modification of Message 2 contents. 19 

Message 3 confirms to the Supplicant that there is no man-in-the-middle. If the Supplicant selected SNonce 20 
randomly, it also demonstrates that the PTK is fresh and that the Authenticator is live. The MIC again 21 
prevents undetected modification of Message 2. 22 

Message 4 serves no cryptographic purpose. 23 

Then the 4-way handshake uses a correct but unusual mechanism to guard against replay. As noted above, 24 
ANonce provides replay protection to the Authenticator, and SNonce to the Supplicant. In most session 25 
initiation protocols, replay protection is accomplished explicitly by selecting a nonce randomly and 26 
requiring the peer to reflect the received nonce in a response message. The 4-way handshake instead mixes 27 
ANonce and SNonce into the PTK, and replays are detected implicitly by MIC failures. In particular, the 28 
Replay Counter field appears to serve no cryptographic purpose in the 4-way handshake. Its presence is not 29 
detrimental, however, and it seems to play a useful role as a minor performance optimization for processing 30 
stale instances of Message 2. This replay mechanism is correct, but its implicit nature makes the protocol 31 
harder to understand than an explicit approach. 32 

It is critical to the correctness of the 4-way handshake that at least one bit differs in each message. Within 33 
the 4-way handshake, Message 1 can be recognized as the only one with the MIC bit clear, meaning 34 
Message 1 does not include the MIC, while Messages 2-4 do. Message 3 differs from Message 2 by not 35 
asserting the Ack bit and from Message 4 by asserting the Ack Bit. Message 2 differs from Message 4 by 36 
including the RSN IE. 37 

Request messages cannot be confused with 4-way handshake messages, since the former asserts the Request 38 
bit and 4-way handshake messages do not. Group key handshake messages cannot be mistaken for 4-way 39 
handshake messages, since they assert a different Key Type. 40 

8.5.4  Group key handshake 41 

The Authenticator uses the Group Key handshake to send a new Group Transient Key (GTK) to the 42 
Supplicant. The Authenticator may initiate this as the final stage of authenticating a Supplicant. 43 
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If the Authenticator is the GTK authenticator, and if the group key cipher suite is TKIP, the authenticator 1 
shall initiate the exchange if its AP detects a TKIP data integrity failure using the GTK, when a Supplicant 2 
disassociates or deauthenticates, or on a management event. 3 

Authenticator → Supplicant: EAPOL(1,1,1,0,Key Id,G, RSC, GNonce, MIC,GTK) 4 

Supplicant → Authenticator:  EAPOL(1,0,0,0,G,0,0,MIC,0) 5 

Here 6 

• KeyId identifies the WEP key id the Authenticator’s STA will use when sending traffic protected 7 
by the GTK. 8 

• RSC denotes the last packet sequence number sent using the GTK. 9 

• GTK denotes the GTK encrypted using the key EK defined in 8.5.1. 10 

• MIC is computed over the body of the containing EAPOL-Key message (with the MIC field 11 
zeroed for the computation) using the key MK defined in 8.5.1. 12 

Informative Note: The Supplicant may trigger a Group Key Update by sending an EAPOL-Key message with 13 
the Request bit set to 1 and by the type of the Group key bit. 14 

An Authenticator shall do a 4-way handshake before a Group Key Update if both are required to be done. 15 

Informative Note: The Supplicant does not require the GNonce but the Authenticator should send the Nonce 16 
it used to derive the GTK to help with interoperable issues. Rather, GNonce is useful for debugging. 17 

Informative Note: The Authenticator cannot initiate the Group Key handshake until the 4-way handshake 18 
completes successfully. 19 

If an AP cannot send the EAPOL-Key message containing a Group Key to a STA, the AP may queue the 20 
message. If the AP deletes the message, the AP should send a Deauthentication message and then delete the 21 
association state by setting the L2Failure event in the Authenticator state machine. 22 

8.5.4.1  Message 1 23 

Message 1 uses of the following values for each of the EAPOL-Key message fields 24 

Descriptor Type = 254 25 

Key Information. 26 
Version Number = 1 (RC4 encryption with HMAC-MD5) or 2 (AES-128-CBC 27 
encryption with AES-128-CBC-MAC) 28 
Key Type = 0 (Group) 29 
KeyID = 1, 2, or 3 30 
Install flag = 1 31 
Key Ack = 1 32 
Key MIC = 1 33 
Secure = 1 34 
Error = 0 35 
Request = 0 36 
Reserved = 0 37 

Key Length = 16  38 

Key Replay Counter = n 39 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

--`,`,,,,``,,``,`,````,,,,,`,`,-`-`,,`,,`,`,,`---



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  106

Key Nonce = GNonce 1 

Key IV = version specific 2 

Key RSC = last transmit sequence number for the GTK. 3 

Key ID = 0 – reserved 4 

Key MIC = MIC(MK, EAPOL) 5 

Key Material Length = 32 6 

Key Material = version specific 7 

The Authenticator sends Message 1 to the supplicant. 8 

Informative Note: To prevent replay attacks of packets sent prior to joining the BSS, the KeyRSC is sent with 9 
the GTK so that newly associated STAs start with the current value of the Group Key sequence counter. It 10 
may take a short time for the STA to get the current RSC from the AP, so packets affecting the value of the 11 
RSC may be sent between the current value and that obtained from the AP. Therefore some small window of 12 
vulnerability to replay attack necessarily exists. 13 

On reception of Message 1, the Supplicant 14 

1. verifies that the Replay counter has not yet been seen before, i.e., its value is strictly larger than 15 
that in any other EAPOL-Key message received thus far during this session. 16 

2. verifies that the MIC is valid, i.e., it uses the MK that is part of the PTK to verify that there is no 17 
data integrity error. 18 

3. uses the MLME-SETKEYS.request to configure the temporal GTK into its IEEE 802.11 MAC, 19 
and responds by creating and sending Message 2 of the Group Key handshake to the Authenticator 20 
and increment the Replay Counter. 21 

Informative Note: The Authenticator must increment and use a new Replay Counter value on every Message 22 
1 instance, even retries, because the Message 2 responding to an earlier Message 1 may have been lost. If the 23 
Authenticator did not increment the Replay Counter, the Supplicant will discard the retry, and no responding 24 
Message 2 will ever arrive. 25 

8.5.4.2  Message 2 26 

Message 2 uses of the following values for each of the EAPOL-Key message fields 27 

Descriptor Type = 254 28 

Key Information. 29 
Version number = 1 (RC4 encryption with HMAC-MD5) or 2 (AES-128-CBC encryption 30 
with AES-128-CBC-MAC) – same as Message 1 31 
Key Type = 0 (Group) – same as Message 1 32 
KeyID = 1, 2, or 3 – same as Message 1 33 
Install = 0 34 
Key Ack = 0 35 
Key MIC = 1 36 
Secure = 1 37 
Error = 0 38 
Request = 0 39 
Reserved = 0 40 

Key Length = 16  41 

Key Replay Counter = n – same as Message 1 42 
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Key Nonce = 0 1 

Key IV = 0 2 

Key MIC = MIC(MK, EAPOL) 3 

Key Material Length = 0 4 

Key Material = 0. 5 

On reception of Message 2, the Authenticator 6 

1. verifies that the Replay Counter matches one it has used in the Group Key handshake. 7 

2. verifies that the MIC is valid, i.e., it uses the MK that is part of the PTK to verify that there is no 8 
data integrity error. 9 

8.5.4.3  Group key distribution implementation considerations 10 

If the authenticator does not receive a reply to its messages, its AP should retry up to three times at one 11 
second intervals; if it still has not received a response after this, then the Authenticator’s AP should 12 
disassociate/deauthenticate the STA.  13 

8.5.4.4  Example Group key distribution (Informative) 14 

802.11 Station
802.1X Supplicant

802.11Access Point
802.1X Authenticator

EAPOL-Key (1, 1, 1, 0, Key Index, G, KeyIV, GNonce, MIC, GTK)

Decrypt GTK and set in Key index

EAPOL-Key (0, 1, 0, 0, 0, G, 0, 0, MIC, 0)

Set GTK in Key Index

GNonce = Get next Key Counter

Fig15 
ure 51—Example group key distribution 16 

The Group key handshake state machine changes the Group key in use by the network. The following steps 17 
occur: 18 

1. The Authenticator generates a new GTK. It encrypts the GTK and sends an EAPOL-Key message 19 
containing the GTK (Message 1), along with the last sequence number used with the GTK (RSC). 20 

2. On receiving the EAPOL-Key message, the Supplicant validates the MIC, decrypts the GTK, and 21 
uses the MLME-SETKEYS.request primitive to configure the GTK and the RSC in its STA. 22 

3. The Supplicant then constructs and sends an EAPOL-Key message in acknowledgement to the 23 
Authenticator. 24 

4. On receiving the EAPOL-Key message, the Authenticator validates the MIC. If the GTK is not 25 
already configured into IEEE 802.11, after it has delivered the GTK to all associated STAs, it uses 26 
the MLME-SETKEYS.request primitive to configure the GTK into 802.11. 27 
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8.5.5  Supplicant key management state machine 1 
There is one state machine for Supplicants. The Supplicant shall reinitialize the Supplicant state machine 2 
whenever its system initializes. A Supplicant enters the AUTHENICATION state on an event from the 3 
MAC that requests another STA to be authenticated. A Supplicant enters the STAKEYSTART state on 4 
receiving an EAPOL-Key messages from the Authenticator. If the MIC on any of the EAPOL-Key 5 
messages fails, the Supplicant silently discards the packet.  6 

MSK = 0
802.1X::portMode = Disabled
Remove PTK
Remove GTK(0..N)
802.1X:VirtualPort = True

INITIALIZE

SNonce = Counter++;
PTK = GTK[0..N] = 0;
CANonce = 0;
802.1X::VirtualSecure = False
802.1X::portControl = Auto;
802.1X::portMode = Enabled;

AUTHENTICATION

DeautheticationRequest || Init

AuthenticationRequest

StaProcessEAPOL-Key

STAKEYSTART

EAPOLKeyRecieved
&& MICVerified

StaDisconnect()

DISCONNECTED

UCT

EAPOLKeyRecieved
 && MICVerified

SNonce = Counter++;
Remove PTK
Remove GTK[0..N]
Send EAPOL(0, 1 ,1 , 0, 0, P, 0, SNonce, MIC(PTK), 0)
IntegrityFailed = False
Updatekeys = False

KEYUPDATE

IntegrityFailed

UCT

Updatekeys

AuthenticationFailed

 7 
Figure 52—Supplicant key management state machine 8 

UCT means the event triggers an immediate transition. 9 

This state machine does not use timeouts, etc. The IEEE 802.1X state machine has timeouts that recover 10 
from Authentication failures, etc. 11 

The Management entity will send an AuthenticationRequest event when it wants an Authenticator 12 
authenticated, this can be before or after the station associates to the AP. In an IBSS environment the event 13 
will be generated when a Probe Response is received. 14 

8.5.5.1 Supplicant state machine states 15 

DISCONNECTED: A STA’s supplicant enters this state when IEEE 802.1X authentication fails. The 16 
supplicant executes StaDisconnect and enters the INITIALIZE state. 17 

INITIALIZE: A STA’s supplicant enters this state from the DISCONNECTED state, when it receives 18 
disassociate or Deauthentication messages, or when the STA initializes, causing the STA’s supplicant to 19 
initialize the key state variables. 20 

AUTHENTICATION: A STA’s supplicant enters this state when it sends an IEEE 802.1X 21 
AuthenticationRequest to authenticate an SSID. 22 
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STAKEYSTART: A STA’s supplicant enters this state when it receives an EAPOL-Key message. All the 1 
information to process the EAPOL-Key message is in the message and is described in procedure 2 
StaProcessEAPOL-Key. 3 

KEYUPDATE: A STA’s supplicant enters this state when its STA requires a key update from the 4 
authenticator. This may be because of a management event or because of a data integrity failure occurs. 5 
From this state the supplicant sends an EAPOL-Key message to the authenticator to update the transient 6 
keys. The Request bit shall be set. 7 

8.5.5.2 Supplicant state machine variables 8 

DeauthenticationRequest – The Supplicant set this variable to TRUE if the Supplicant’s STA reports it has 9 
received disassociate or Deauthentication messages. 10 

AuthenticationRequest – The Supplicant sets this variable to TRUE if its STA’s IEEE 802.11 Management 11 
Entity reports it wants an SSID authenticated. This can be on association or at other times. 12 

AuthenticationFailed – The Supplicant sets this variable to TRUE if the IEEE 802.1X authentication failed. 13 
The Supplicant uses the MLME-DISASSOCIATE.request to cause its STA to disassociate from the 14 
authenticator’s STA. 15 

EAPOLKeyReceived – The Supplicant sets this variable to TRUE when it receives an EAPOL-Key 16 
message. 17 

IntegrityFailed – The Supplicant sets this variable to TRUE when its STA reports that a fatal data integrity 18 
error  (e.g. Michael failure) has occurred. 19 

Informative Note: A Michael failure is not the same as MICVerified since IntegrityFailed is generated if the 20 
MAC integrity check fails, MICVerified is generated from validating the EAPOL-Key MIC. Note also the 21 
STA does not generate this event for CCMP or WRAP, since countermeasures are not required. 22 

MICVerified – The Supplicant sets this variable to TRUE if the MIC on the received EAPOL-Key message 23 
verifies as correct. The Supplicant silently discards any EAPOL-Key message received with an invalid 24 
MIC. 25 

Counter – The Supplicant uses this variable as a global counter used for generating nonces. 26 

SNonce – This variable represents the Supplicant’s nonce. 27 

PTK – This variable represents the current PTK. 28 

TPTK – This variable represents the current PTK until the third message of the 4-way handshake arrives 29 
and is verified. 30 

GTK[] – This variable represents the current GTKs for each group key index. 31 

PMK – This variable represents the current PMK. 32 

802.1X::XXX –  denotes another IEEE 802.1X state variables XXX not specified herein. 33 

8.5.5.3  Procedures 34 

STADisconnect. The Supplicant invokes this procedure to disassociate and deauthenticate its STA from the 35 
AP. 36 

RemoveGTK – The Supplicant invokes this procedure to remove the GTK from its STA. 37 
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MIC(x) – The Supplicant invokes this procedure to compute a Message Integrity Code of the data x. 1 

CheckMIC() – The supplicant invokes this procedure to verify a MIC computed by the MIC() function. 2 

StaProcessEAPOL-Key – The Supplicant invokes this procedure to process a received EAPOL-Key 3 
message. The pseudo code for this procedure is: 4 

StaProcessEAPOL-Key (S, M, A, T, N, K, RSC, ANonce, GNonce, MIC, GTK) 5 
TPTK ← PTK 6 
TSNonce ← 0 7 
UpdatePTK ← 0 8 
State ← UNKNOW 9 
if M = 1 then  10 

if Check MIC(PTK, EAPOL-Key message) fails then 11 
State ← FAILED 12 

else 13 
State ← MICOK 14 

endif 15 
endif 16 

if K = P then 17 
if State ≠ FAILED then 18 

if PSK exists then – PSK is a pre-shared key 19 
PMK ← PSK 20 

else 21 
PMK ← Master Session Key from 1X 22 

endif  23 
TSNonce ← SNonce 24 
TPTK ← Calc PTK(ANonce, TSNonce)  25 

endif 26 
if State = MICOK then 27 

PTK ← TPTK 28 
UpdatePTK ← TRUE 29 

endif 30 

else if State = MICOK then  -- K = G 31 
if GTK[N] ← Decrypt GTK succeeds then 32 

if Set GTK(N, T, RSC, GTK[N]) fails then 33 
invoke MLME-DEAUTHENTICATE.request 34 

endif 35 
else 36 

State ← FAILED 37 
endif 38 

else 39 
State ← FAILED 40 

endif 41 
if A = 1 and State ≠ FAILED then 42 

Send EAPOL(0, 1, 0, 0, 0, K, 0, TSNonce, 0, MIC(TPTK), 0) 43 
endif 44 
if UpdatePTK = 1 then 45 

if Set PTK(N, TRUE, RSC, PTK) fails then 46 
invoke MLME-DEAUTHENTICATE.request 47 

endif 48 
if State = MICOK and S = 1 then 49 

802.1X::VirtualSecure = TRUE 50 
endif 51 
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Here UNKNOWN, MICOK and FAILED are values of the variable State used in the Supplicant pseudo 1 
code. State is used to decide to do the key processing. MICOK is set when the MIC of the EAPOL-Key has 2 
been checked and is valid. FAILED is used when a failure has occurred in processing the EAPOL-Key 3 
message. UNKNOWN is the initial value of the State variable. 4 

Informative Note: A Supplicant shall only use Key Descriptor of type 254 and version 1 or 2 to and from 5 
RSN Access Points; it shall ignore other Key Descriptor types and Versions. 6 

Informative Note: EAPOL-Key messages with Key Type of Pairwise and a non-zero key index should be 7 
ignored. 8 

Informative Note: EAPOL-Key messages with Key Type of Group and an invalid key index should be 9 
ignored. 10 

Informative Note: The Replay Counter used by the Supplicant for EAPOL-Key messages that are sent in 11 
response to a received EAPOL-Key message must be the received Replay Counter. 12 

Informative Note: TPTK is used to stop attackers changing the PTK on the supplicant by sending the first 13 
message of the 4-way handshake. An attacker can still affect the 4-way handshake while the 4-way handshake 14 
is being carried out. 15 

Informative Note: The PMK will be supplied by the authentication method used with IEEE 802.1X if Pre-16 
shared mode is not used. 17 

Informative Note: Invalid EAPOL-Key messages such as invalid MIC, Group Key without a MIC, etc. are 18 
ignored. 19 

Informative Note: A PTK is configured into the encryption/integrity engine depending on the Tx/Rx bit but if 20 
configured is always a transmit key. A GTK is configured into the encryption/integrity engine independent of 21 
the state of the Tx/Rx bit but whether the GTK is used as a transmit key is dependent on the state of the 22 
Tx/Rx bit. 23 

CalcGTK(x) –  Calculates the Group Transient Key (GTK) using GNonce as the nonce input to the PRF. 24 

DecryptGTK(x) – Decrypt the GTK from the EAPOL-Key message 25 

SetPTK/GTK(x) – Sets the PTK/GTK into the encryption/integrity engine 26 

Informative Note: On receiving the IEEE 802.1X EAP-Success message a Supplicant should compare the 27 
received keys and the ciphers specified in the RSN information element for consistency problems. E.g. the 28 
RSN information element specifies a unicast cipher but no Pairwise Key was configured into the 29 
encryption/integrity engine. 30 

8.5.6  Authenticator key management state machine 31 

There is one state diagram for the GTK Authenticator. In an ESS the GTK Authenticator will always be the 32 
AP, and in an IBSS environment will be a designated machine. 33 

The state diagram in Figure 53 consists of three state machines: 34 

1. The first state machine (PTK state machine) uses the DEAUTHENTICATE, DISCONNECTED, 35 
INITIALIZE, AUTHENTICATION, INITPMK, INITPSK, PTKSTART, 36 
PTKINITNEGOTIATING, UPDATEKEYS, MICFAILURE and UPDATEKEYS states. An 37 
instance of this state machine exists for each association and handles the initialization, 4-way 38 
handshake, tear-down, and general clean-up. 39 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  112

2. The second state machine (PTK Group Key state machine) uses the REKEYNEGOTIATING, 1 
KEYERROR and REKEYESTABLISHED states. An instance of this state machine exists for each 2 
association and handles transfer of the GTK to the associated client. 3 

3. The third state machine (Group Key state machine) uses the SETKEYS and SETKEYSDONE 4 
states. A single instance of this state machine exists on the Authenticator. It changes the Group key 5 
when required, triggers all the PTK Group Key state machines and updates the IEEE 802.11 MAC 6 
in the Authenticator’s AP when all STAs have the updated Group key. 7 

 8 
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 1 

 2 

GNoStations--

DISCONNECTED

Send EAPOL(0, 0 ,1 , 0, 0, P, ANonce, 0, 0)
TimeOutCtr++

PTK START

PTK = Calc PTK(ANonce, SNonce)
Check MIC(PTK)
Send EAPOL(0, 1, 1, Pair, 0, P, ANonce, MIC(PTK), 0)

PTKINITNEGOTIATING

UCT

TimeoutEvt

EAPOLKeyRecvd
&& K == Pairwise
&& MICVerified

PInitAKeys = False
GUpdateStationKeys = False
Send EAPOL(1, 1, 1, !Pair, GN, G, GNonce, MIC(PTK), GTK[GN]);
TimeOutCtr++

REKEYNEGOTIATING

MSK = 0
GInitAKeys = PInitAKeys = IntegrityFailed = False
If Unicast cipher supported by Authenticator

Pair = 1
802.1X::portMode = Disabled
Remove PTK
802.1X:portSecure = 0

INITIALIZE

ANonce = Counter++;

AUTHENICATION2

PMK = RadiusKey
INITPMK

Init

802.1X::authSuccess

GTKReKey = False
If GInitDone == False {

GTK[0..N] = 0;
GN = 1
GM = 2

}
Else

Swap(GM,GN)
GInitDone = True
GKeyDoneStations = GNoStations
GNonce = Counter++;
GTK[GN] = Calc GTK(GNonce);
GUpdateStationKeys = True

SETKEYS

GTKAuthenticator &&
(GTKReKey

|| (GInitAKeys && !GInitDone))

Check MIC(PTK)
GKeyDoneStations–-
TimeOutCtr = 0
802.1X::portSecure = 1

REKEYESTABLISHED

EAPOLKeyRecieved
&& K == Group
&& MICVerified

SetGTK(GN, Tx/Rx, GTK[GN])
GKeyReady = True

SETKEYSDONE

GKeyDoneStations == 0

TimeoutEvt

GUpdateStationKeys
|| (GKeyReady && PInitAKeys)

GKeyDoneStations--
KEYERROR

TimeoutCtr>N

UCT

STADisconnect()

DISCONNECT

UCT

DeauthenticationRequest

Check MIC(PTK)

UPDATEKEYS

EAPOLKeyRecvd &&
Request == True
&& MICVerified

!IntegrityFailed
(Error == False)

IntegrityFailed

UCT

ANonce = Counter++;
GNonce = Counter++;

KEYUPDATE

UCT

IntegrityFailed = False
If Group Key failure

GTKReKey = True
Waitupto60()

INTEGRITYFAILURE

UCT

IntegrityFailed
(Error == True)

Check MIC(PTK)
If Pair == 1

Set PTK(0, Tx/RX, PTK)
GInitAKeys = True
PInitAKeys = True

PTKINITDONE

EAPOLKeyRecvd
&& K == Pairwise
&& MICVerified

TimeoutEvt

PMK = PSK
INITPSK

PSK

UCT

Disconnect

TimeoutCtr>N

GNoStations++
PTK = 0;
802.1X::portControl = Auto;
802.1X::portMode = Enabled;

AUTHENICATION

AuthenticationRequest

UCT
ReAuthenticationRequest

!RadiusKeyAvailable

RadiusKeyAvailableTimeoutCtr>N

3 
 4 

Figure 53—Authenticator state machine 5 
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Since there are two GTKs, responsibility for updating these keys is given to the Group Key state machine. 1 
That is, this state machine determines which GTK is in use at any time. When a first STA associates, the 2 
Group Key state machine has not been started and is started by GInitAKeys variable when the 4-way 3 
handshake completes. The Group Key state machine initializes the value of the Group Key and then triggers 4 
the PTK Group Key state machine, which actually sends the Group Key to the associated station. 5 

When a second STA associates, the Group Key state machine is already initialized, and a Group Key is 6 
already available and in use. The PTK Group Key state machine is immediately triggered from the 7 
PTKINITDONE state and sends the current Group Key to the new station. 8 

When the GTK is to be updated the GTKReKey variable is set. The SETKEYS state updates the Group Key 9 
and triggers all the PTK Group Key state machines that current exist—one per associated STA). Each PTK 10 
Group Key state machine sends the Group Key to its station.  When all the stations have received the Group 11 
Key (or failed to receive the key), the SETKEYSDONE state is executed which updates the APs 12 
encryption/integrity engine with the new key. 13 

Both the PTK state machine and the PTK Group Key state machine both use received EAPOL-Key 14 
messages as an event to change states. The PTK state machine only uses EAPOL-Key messages with the 15 
key type set to Pairwise key and the PTK Group Key state machine only uses EAPOL-Key messages with 16 
the key type set to Group key. 17 

8.5.6.1 Authenticator state machine states 18 

DEAUTHENTICATE: This state is entered is an EAPOL-Key message is received and fails its MIC 19 
check. It sends a Deauthentication message to the Access Point and enters the INITIALIZE state. 20 

DISCONNECTED: The Authenticator enters this state when disassociate or Deauthentication messages is 21 
received. 22 

INITIALIZE: The Authenticator enters this state from the DISCONNECTED state, when 23 
DeauthenticationRequest event occurs or when the STA initializes. This state initializes the key state 24 
variables. 25 

AUTHENTICATION: The Authenticator enters this state when the STA’s management entity sends an 26 
AuthentiationRequest to authenticate an SSID. 27 

INITMSK: The authenticator enters this state when the IEEE 802.1X AS signals a successful 28 
authentication, or it a pre-shared key is available. If a RadiusKey is supplied it goes to the PTKSTART 29 
state, otherwise it goes to the DISCONNECTED state. 30 

Informative Note. An Authenticator should not allow itself to negotiate IEEE 802.1X if it is not fully 31 
configured. 32 

PTKSTART: The Authenticator enters this state from INITMSK to start the 4-way handshake, or if no 33 
response to the 4-way handshake occurs. 34 

PTKINITNEGOTIATING: The Authenticator enters this state when it receives the second EAPOL-Key 35 
message of the 4-way handshake. 36 

UPDATEKEYS: The Authenticator enters this state when it receives an EAPOL-Key message is received 37 
from the Supplicant to initiate the 4-way handshake. The key type in the EAPOL-Key message must be set 38 
to Pairwise key and the Request bit must be set. 39 

MICFAILURE: The Authenticator enters this state when EAPOL-Key MIC failure occurs—detected 40 
either locally, or signaled by peer Supplicant—when the key type indicates a Pairwise key and the Request 41 
and Error bits are both set. 42 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  115

REKEYNEGOTIATING: The Authenticator enters this state when a GTK is to be sent to the Supplicant. 1 

Informative Note: The TxRx flag for sending a Group Key is always the opposite of whether the Pairwise 2 
Key is used for data encryption/integrity or not. If a Pairwise key is used for encryption/integrity then the 3 
station never transmits with the Group Key otherwise the station uses the Group Key for transmit. 4 

REKEYESTABLISHED: The Authenticator enters this state when it receives an EAPOL-Key message 5 
from the supplicant with the key type set to Group key. 6 

KEYERROR: The Authenticator enters this state if the EAPOL-Key acknowledgement for the Group key 7 
update is not received before a timeout. 8 

SETKEYS: The Authenticator enters this state when the GTK is to be updated at all Supplicants. 9 

SETKEYSDONE: The Authenticator enters this state when the Group key update has completed. 10 

Informative Note: SETKEYSDONE calls SetGTK to set the Group key for all associated stations if this fails 11 
all communication via this key will fail and the AP needs to detect and recover from this situation. 12 

8.5.6.2 Authenticator state machine variables 13 

AuthenticationRequest – This variable is set TRUE if the STA’s IEEE 802.11 Management Entity wants an 14 
SSID to be authenticated. This can be set when the STA associates or at other times. 15 

ReAuthenticationRequest – This variable is set TRUE if the IEEE 802.1X Authenticator received an 16 
eapStart or 802.1X::reAuthenticate is set. 17 

DeauthenticationRequest – This variable is set TRUE if a disassociation or Deauthentication message is 18 
received. 19 

RadiusKeyAvailable – This variable is True is a Radius key was supplied. 20 

EAPOLKeyReceived – This variable is set TRUE when an EAPOL-Key message is received. EAPOL-Key 21 
messages that are received in respond to an EAPOL-Key message sent by the Authenticator must contain 22 
the same Replay Counter as the Replay Counter in the transmitted message. EAPOL-Key messages that 23 
contain different Replay Counters should be discarded. An EAPOL-Key message that is sent by the 24 
Supplicant in response to an EAPOL-Key message from the Authenticator must not have the Ack bit set. 25 
EAPOL-Key messages sent by the Supplicant not in response to an EAPOL-Key message from the 26 
Authenticator must have the Request bit set. 27 

Informative Note: EAPOL-Key messages with Key Type of Pairwise and a non-zero key index should be 28 
ignored. 29 

Informative Note: EAPOL-Key messages with Key Type of Group and an invalid key index should be 30 
ignored. 31 

Informative Note: When an EAPOL-Key message with the Ack bit not set is received then it is expected as a  32 
reply to a message that the Authenticator sent and the replay counter is checked against the replay counter 33 
used in the sent EAPOL-Key message. When an EAPOL-Key message with the Request bit set is received 34 
then a replay counter for these messages is used, which is a different replay counter than the replay counter 35 
used for sending messages to the Supplicant. 36 

TimeoutEvt - This variable is set TRUE if the EAPOL_Key packet sent out fails to obtain a response from 37 
the Supplicant. The variable may be set by management action, or by the operation of a timeout while in the 38 
PTKSTART and REKEYNEGOTIATING states.   39 
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TimeoutCtr – This variable maintains the count of EAPOL-Key receive timeouts. It is incremented each 1 
time a timeout occurs on EAPOLKeyRcvd event and is initialized to 0. Clause 8.6.5.3 contains details of 2 
the timeout values. The Replay Counter for the EAPOL-Key message shall be incremented on each 3 
transmission of the EAPOL-Key message. 4 

L2Failure. – This variable is set if IEEE 802.11 fails to send the EAPOL-Key message containing the 5 
Group key to the station. 6 

MICVerified  - This variable is set to TRUE if the MIC on the received EAPOL Key packet is verified and 7 
is correct. Any EAPOL-Key messages with an invalid MIC will be dropped and ignored. 8 

GTKAuthenticator - This is TRUE if the Authenticator is on an AP or it is the designated Authenticator for 9 
an IBSS. 10 

IntegrityFailed - This is set to TRUE when a data integrity error (i.e. Michael failure) occurs. 11 

Information Note: This is not the same as MICVerified since IntegrityFailed is generated if the MAC 12 
integrity check fails, MICVerified is generated from validating the EAPOL-Key MIC. 13 

GKeyDoneStations - Count of number of stations left to have their Group key updated. 14 

GTKRekey – This variable is set to TRUE when a Group key update is required. 15 

GInitAKeys – This variable is set to TRUE when the Group key update state machine is required. 16 

GInitDone – This variable is set to TRUE when the Group key update state machine has been initialized. 17 

GUpdateStationKeys – This variable is set to TRUE when a new Group key is available to be sent to 18 
Supplicants. 19 

GNoStations – This variable counts the number of Authenticators so it is known how many Supplicants 20 
need to be sent the Group key. 21 

GkeyReady – This variable is set to TRUE when a Group key has been sent to all current Supplicants. This 22 
is used by new Authenticator state machines to decide whether a Group key is available to immediately send 23 
to its Supplicant. 24 

PInitAKeys – This variable is set to TRUE when the Authenticator is ready to send a Group key to its 25 
Supplicant after initialization. 26 

Counter – This variable is the global station Key Counter used for generating Nonces. 27 

ANonce – This variable holds the current Nonce to be used if the station is an Authenticator. 28 

GNonce – This variable holds the current Nonce to be used if the station is a Group key Authenticator. 29 

GN, GM – These are the current key indexes for Group keys. Swap(GM, GN) means that the global key 30 
index in GN is swapped with the global key index in GM, so now GM and GN are reversed. 31 

PTK – This variable is the current Pairwise transient key. 32 

GTK[]– This variable is the current Group transient keys for each Group key index. 33 

PMK – PMK is the buffer holding the current Pairwise Master Key. 34 

802.1X::XXX – the IEEE 802.1X state variable XXX. 35 
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8.5.6.3 Authenticator state machine procedures 1 

STADisconnect() – Execution of this procedure disassociates and deauthenticates the station. 2 

CalcGTK(x). – Calculates the Group Transient Key(GTK) using GNonce as the nonce input to the PRF. 3 

RemoveGTK(x)/Remove PTK – Deletes GTK or PTK from encryption/integrity engine. 4 

MIC(x) – Computes a Message Integrity Code over the plaintext data. 5 

CheckMIC(). – Verifies the MIC computed by MIC() function. 6 

Waitupto60() – This procedure should stop the Authenticator state machines for all stations at this point if 7 
the state machines enter this procedure until 60 seconds have gone by from the last exit from this procedure; 8 
i.e. the first time this state machine is entered, it can return immediately. The next time it must stop here 9 
until at least 60 seconds from the last time someone has left has gone by. If multiple state machines enter 10 
this procedure at the same time then 60 seconds must go by for each state machine to leave this procedure. 11 

8.5.7  Nonce generation (Informative) 12 

All stations contain a global Key Counter which is 256 bits in size. It should be initialized at system boot up 13 
time to a fresh cryptographic quality random number.  Refer to Annex F.9 on random number generation. 14 
When the IEEE 802.1X initializes, it is recommended that IEEE 802.1X set the counter value to: 15 

PRF-256(Random number, “Init Counter”, Local MAC Address || Time) 16 

The Local MAC Address should be AA on the Authenticator and SA on the Supplicant. 17 

Random number should be the best possible random number possible and 256 bits in size. Time should be 18 
the current time (from NTP or another time in NTP format) whenever possible. This initialization is to 19 
ensure that different initial Key Counter values occur across system restarts whether a real-time clock is 20 
available or not. The Key Counter must be incremented (all 256 bits) each time a value is used as a nonce or 21 
IV. The Key Counter must not be allowed to wrap to the initialization value, and should be reinitialized 22 
using a new random number if this happens. 23 

8.6  Mapping EAPOL keys to 802.11 keys 24 

8.6.1  Mapping PTK to TKIP keys 25 

8.5.1.2 defines the EAPOL temporal keys TK1 and TK2 derived from PTK. 26 

A STA shall use TK1 as its input to the TKIP Phase 1 Mixing Function. 27 

A STA shall use bits 0-63 of TK2 as the Michael key for MSDUs from the Authenticator’s STA to the 28 
Supplicant’s STA. 29 

A STA shall use bits 64-127 of TK2 as the Michael key for MSDUs from the STA with the larger MAC 30 
address to the STA with the smaller MAC address. 31 

8.6.2  Mapping GTK to TKIP keys 32 

8.5.1.3 defines the EAPOL temporal keys TK1 and TK2 derived from GTK. 33 

A STA shall use TK1 as the input to the TKIP Phase 1 Mixing Function. 34 
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A STA shall use bits 0-63 of TK2 as the Michael key for MSDUs from the Authenticator’s STA to the STA 1 
. 2 

A STA shall use bits 64-127 of TK2 as the Michael key for MSDUs from the Supplicant’s STA to the 3 
Authenticator’s STA. 4 

8.6.3  Mapping PTK to WRAP keys 5 

8.5.1.2 defines the EAPOL temporal keys TK1 and TK2 derived from PTK. 6 

A STA shall use TK1 as the WRAP key for MSDUs between the two communicating STAs. 7 

A STA shall not use TK 2 with WRAP. 8 

8.6.4  Mapping GTK to WRAP keys 9 

8.5.1.3 defines the EAPOL temporal keys TK1 and TK2 derived from GTK. 10 

A STA shall use TK1 as the WRAP key for MSDUs between the two communicating STAs. 11 

A STA shall not use TK2 with WRAP. 12 

8.6.5  Mapping PTK to CCMP keys 13 

8.5.1.2 defines the EAPOL temporal keys TK1 and TK2 derived from PTK. 14 

A STA shall use TK1 as the CCMP key for MSDUs between the two communicating STAs. 15 

A STA shall not use TK 2 with CCMP. 16 

8.6.6  Mapping GTK to CCMP keys 17 

8.5.1.3 defines the EAPOL temporal keys TK1 and TK2 derived from GTK. 18 

A STA shall use TK1 as the CCMP key for MSDUs between the two communicating STAs. 19 

A STA shall not use TK2 with CCMP. 20 

8.6.7  Mapping GTK to WEP-40 keys 21 

8.5.1.3 defines the EAPOL temporal keys TK1 and TK2 derived from GTK. 22 

A STA shall use bits 0-39 of TK1 as the WEP-40 key for MSDUs between the two communicating STAs. 23 

A STA shall not use TK2 with WEP-40. 24 

8.6.8  Mapping GTK to WEP-104 keys 25 

8.5.1.3 defines the EAPOL temporal keys TK1 and TK2 derived from GTK. 26 

A STA shall use bits 0-103 of TK1 as the WEP-104 key for MSDUs between the two communicating 27 
STAs. 28 

A STA shall not use TK2 with WEP-104. 29 
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8.7 Temporal key processing 1 

Since IEEE 802.1X provides MSDU filtering based on port status, , the 802.11 MAC need not apply 2 
filtering except to support legacy WEP behavior in a TSN: 3 

1. dott11PrivacyInvoked shall be true in order for a STA to apply RSN protections. 4 

2. STAs protect all MSDUs when temporal keys are configured, and send and receives all MSDUs in 5 
the clear when temporal keys not configured. 6 

3. STAs protect IEEE 802.1X messages only with a key-mapping key; STAs shall not protect IEEE 7 
802.1X messages with default keys. 8 

4. STAs must always be prepared to send or receive IEEE 802.1X data messages in the clear. 9 

5. An AP should disassociate and/or deauthenticate a station on receiving an IEEE 802.1X authFail 10 
event for the STA. 11 

 8.7.1  Per-MSDU Tx pseudo-code 12 

if dot11PrivacyInvoked = FALSE then  13 
transmit the MSDU without protections 14 

else 15 
 // If we find a suitable unicast or group key for the mode we are in… 16 

if (MSDU has an individual RA and dot11WEPKeyMappings has an entry for that RA 17 
and dot11WEPKeyMappingsKeyBroadcast is false) or (the MDPU has a multicast RA 18 
and the network type is IBSS and the network is RSN and there is an entry in 19 
dot11KeyMapppings for the TA and dot11WEPKeyMappingsKeyBroadcast is true) then 20 

if entry has WEPOn = FALSE then 21 
transmit the MSDU without protections 22 

else 23 
if that entry contains a null key then 24 

discard the entire MSDU and generate an 25 
MA-UNITDATA-STATUS.indication primitive to 26 
notify LLC that the MSDU was undeliverable due to 27 
a null WEP key 28 

else 29 
// Note that it is assumed that no entry will be in the key 30 

 // mapping table of a cipher type that is unsupported. 31 
 Set the KeyID subfield of the IV field to zero. 32 

if cipher type of entry is AES-CCM 33 
Transmit the MSDU, to be protected after fragmentation 34 
using AES-CCM and 35 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID] 36 

else if cipher type of entry is AES-OCB. 37 
Protect MSDU with AES-OCB cipher and entry’s key 38 
Transmit the protected MSDU 39 

  else if cipher type of entry is TKIP 40 
Compute MIC using Michael algorithm and entry’s Tx 41 
MIC key. 42 

   Append MIC to MSDU 43 
Transmit the MSDU, to be protected with TKIP and 44 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID] 45 

  else if cipher type of entry is WEP and dot11RSNEnabled = “false”. 46 
Transmit the MSDU, to be protected with WEP and 47 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID] 48 

end if 49 
endif 50 
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endif 1 
else  // Else we didn’t find a key but we are protected, so handle the default key case or discard 2 

// But 1st, the following covers the case of an AP in a BSS with encryption, that accepts 3 
// non-protected STAs into the BSS and so must transmit broadcasts as plaintext. 4 
if MPDU has a group RA and the Privacy subfield of the Capability Information 5 
field in this BSS is set to 0 then 6 

the MPDU is transmitted without protections 7 
else // No key found so try either default WEP 8 

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] = null then 9 
if Ethertype is 802.1X then 10 

transmit the MPDU without protection 11 
else 12 

discard the MSDU and generate an 13 
MA-UNITDATA-STATUS.indication primitive to 14 
notify LLC that the entire MSDU was undeliverable 15 
due to a null WEP key 16 

else if  dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is not null 17 
Set the KeyID subfield of the IV field to dot11WEPDefaultKeyID. 18 
if cipher type of entry is AES-CCM 19 

Transmit the MSDU, to be protected after fragmentation 20 
using AES-CCM and 21 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID] 22 

else if cipher type of entry is AES-OCB. 23 
Protect MSDU with AES-OCB cipher and entry’s key 24 
Transmit the protected MSDU 25 

 else if cipher type of entry is TKIP 26 
Compute MIC using Michael algorithm and entry’s Tx 27 
MIC key. 28 

  Append MIC to MSDU 29 
Transmit the MSDU, to be protected with TKIP and 30 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID] 31 

 else if cipher type of entry is WEP and dot11RSNEnabled = “false”. 32 
Transmit the MSDU, to be protected with WEP and 33 
dot11WEPDefaultKeys[dot11WEPDefaultKeyID] 34 

end if 35 
endif 36 

endif 37 
endif 38 

endif 39 

8.7.2  Per MPDU Tx pseudo-code 40 

 41 
if  MPDU is member of an MSDU that is to be transmitted without protections 42 

transmit the MPDU without protections 43 
else if MSDU that MPDU is a member of was protected using AES-OCB 44 

Transmit the MPDU unaltered 45 
else if MSDU that MPDU is a member of is to be protected using AES-CCM 46 

Protect the MPDU using entry’s key and AES-CCM 47 
Transmit the MPDU 48 

else if MSDU that MPDU is a member of is to be protected using TKIP 49 
Protect the MPDU using TKIP encryption 50 
Transmit the MPDU 51 

else if MSDU that MPDU is a member of is to be protected using WEP 52 
Encrypt the MPDU using entry’s key and WEP 53 
Transmit the MPDU 54 

else 55 
// should not arrive here 56 

endif 57 
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8.7.3  Per MPDU Rx pseudo-code 1 

if the Protected Frame subfield of the Frame Control Field is zero then 2 
Receive the unencrypted MPDU without protections 3 

else 4 
if (dot11PrivacyOptionImplemented = “true” and the MPDU has individual RA and there is an 5 
entry in dot11WEPKeyMappings matching the MPDU’s TA and 6 
dot11WEPKeyMappingsKeyBroadcast is false) or (the MPDU has a multicast RA and the network 7 
type is IBSS and the network is RSN and there is an entry in dot11KeyMappings for the TA and 8 
dot11WEPKeyMappingsKeyBroadcast is true) then 9 

if entry has an AES-OCB key 10 
   receive the frame unaltered 11 
  else if entry has an AES-CCM key 12 
   decrypt frame using AES-CCM key 13 
   discard the frame if the integrity check fails 14 
  else if entry has a TKIP key 15 
   prepare a temporal key from the TA, TKIP key and PN 16 
   decrypt the frame using RC4 17 
   discard the frame if the ICV fails 18 
  else if entry has a WEP key 19 
   decrypt the frame using WEP decryption 20 
   discard the frame if the ICV fails and increment 21 

dot11WEPUndecryptableCount 22 
  endif 23 

discard the frame body and increment dot11WEPUndecryptableCount 24 
else if dot11WEPDefaultKeys[KeyID] is null then 25 

discard the frame body and increment dot11WEPUndecryptableCount 26 
else if dot11WEPDefaultKeys[KeyID] is a CCM key 27 
  decrypt and authenticate MPDU using CCMP 28 
 else if dot11WEPDefaultKeys[KeyID] is a WRAP key 29 
  Receive the MPDU, since decryption will take place at MSDU level 30 
 else if dot11WEPDefaultKeys[KeyID] is a TKIP key 31 
  Decrypt the MPDU using TKIP 32 
 else if dot11WEPDefaultKeys[KeyID] is a WEP key 33 

attempt to decrypt with dot11WEPDefaultKeys[KeyID], 34 
incrementing dot11WEPICVErrorCount if the ICV check fails 35 

  end if 36 
endif 37 

8.7.4 Per MSDU Rx pseudo-code 38 
if the frame was not protected  39 

if MPDU has a group RA and aHaveGTK =”false” and dot11RSNEnabled = “true” then 40 
 Receive the frame unencrypted 41 
else if aHavePTK = “false” and dot11RSNEnabled = “true”  then //Unicast 42 
 Receive frame unencrypted 43 
else if dot11RSNEnabled = “false” and aExcludeUnencrypted = “false” 44 

Receive the frame without applying protections 45 
  else 46 

discard the frame body without indication to LLC and 47 
increment dot11WEPExcludedCount 48 

endif  49 
else  // Have a protected MSDU 50 

if dot11PrivacyOptionImplemented = TRUE then 51 
if dot11WEPKeyMappings  entry has WEPOn set to FALSE then 52 

discard the frame body and increment  53 
dot11WEPUndecryptableCount 54 

else if dot11WEPKeyMappings  entry contains a key that is null then 55 
discard the frame body and increment 56 
dot11WEPUndecryptableCount 57 

   else if dot11WEPKeyMappings  has an AES-OCB key then 58 
    Decrypt the frame using AES-OCB 59 
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    Discard the frame if authentication fails 1 
Accept the MSDU of the OCB decryption and authentication succeeds 2 

   else if dot11WEPKeyMappings  has an AES-CCM key then 3 
    Accept the MSDU since the decryption took place at the MPDU 4 
   else if dot11WEPKeyMappings  has a TKIP key then 5 
    Compute the MIC using the Michael algorithm 6 
    Compare the received MIC against the computed MIC 7 
    discard the frame if the MIC fails and invoke countermeasures if appropriate, 8 
    otherwise accept the MSDU 9 
   else if dot11WEPKeyMappings  has a WEP key then 10 

Accept the MSDU since the decryption took place at the MPDU 11 
   endif 12 

else // Cannot decrypt payload, so discard it. 13 
discard the frame body 14 

endif 15 
endif 16 

 17 
 18 

[Editorial note: end of Clause 8] 19 

In clause 10.3.11.1.2: 20 

Rename SharedID to KeyID 21 

Change description for SharedID to 22 

This parameter is valid only when the Use of the Key includes ENCRYPT. The KeyID to be assigned to 23 
this Key. 24 

 25 

10.3.2.2.2 Semantics of the service primitive 26 
Add the following rows at the end of the BSSDescription in Clause 10.3.2.2.2: 27 

RSN Information 
Element 

RSN Information Element As defined in frame 
format. 

A description of the cipher suites 
and authenticated key management 
suites supported in the BSS. 

 28 

10.3.6.1.2 Semantics of the service primitive 29 
Add the following parameters to the MLME-ASSOCIATE.request primitive in Clause 30 
10.3.6.1.2: 31 

Authenticated Key Management selector, 32 
Pairwise Key Cipher Suite selector  33 
 34 

Add the following rows at the end of the table in Clause 10.3.6.1.2 defining the MLME-35 
ASSOCIATE.request: 36 

Authenticated Key Integer As defined in RSN IE Authenticated Key Management 
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Management selector format Suite requested for this association 

Pairwise Key Cipher 
Suite selector 

Integer As defined in RSN IE 
format 

The Pairwise Key Cipher Suite 
requested for this association 

 1 

10.3.6.3.2 Semantics of the service primitive 2 
Add the following parameters to the MLME-ASSOCIATE.indication primitive in Clause 3 
10.3.6.3.2: 4 

Authenticated Key Management selector, 5 
Pairwise Key Cipher Suite selector 6 
 7 

Add the following rows at the end of the table in Clause 10.3.6.3.2 defining the MLME-8 
ASSOCIATE.indication: 9 

Authenticated Key 
Management selector 

Integer As defined in RSN IE 
format 

The Authenticated Key Management 
Suite requested for this association 

Pairwise Key Cipher 
Suite selector 

Integer As defined in RSN IE 
format 

The Pairwise Key Cipher Suite 
requested for this association 

 10 

10.3.7.1.2 Semantics of the service primitive 11 
Add the following parameters to the MLME-REASSOCIATE.request primitive in Clause 12 
10.3.7.1.2: 13 

Authenticated Key Management selector, 14 
Pairwise Key Cipher Suite selector 15 
 16 

Add the following rows at the end of the table in Clause 10.3.7.1.2 defining the MLME-17 
REASSOCIATE.request: 18 

Authenticated Key 
Management selector 

Integer As defined in RSN IE 
format 

The Authenticated Key Management 
Suite requested for this association 

Pairwise Key Cipher 
Suite selector 

Integer As defined in RSN IE 
format 

The Pairwise Key Cipher Suite 
requested for this association 

 19 

10.3.7.3.2 Semantics of the service primitive 20 
Add the following parameters to the MLME-REASSOCIATE.indication primitive in Clause 21 
10.3.7.3.2: 22 

Authenticated Key Management selector, 23 
Pairwise Key Cipher Suite selector 24 
 25 
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Add the following rows at the end of the table in Clause 10.3.7.3.2 defining the MLME-1 
REASSOCIATE.indication: 2 

Authenticated Key 
Management selector 

Integer As defined in RSN IE 
format 

The Authenticated Key Management 
Suite requested for this association 

Pairwise Key Cipher 
Suite selector 

Integer As defined in RSN IE 
format 

The Pairwise Key Cipher Suite 
requested for this association 

10.3.8.1.2 Semantics of the service primitive 3 
Add the following Clauses after Clause 10.3.10.2.4, but prior to Clause 10.4, renumbering as 4 
appropriate: 5 

10.3.11  SetKeys 6 

10.3.11.1  MLME-SETKEYS.request 7 

10.3.11.1.1  Function 8 

This primitive causes the keys identified in the parameters of the primitive to be set in the MAC and 9 
enabled for use.  10 

10.3.11.1.2  Semantics of the Service Primitive 11 

The primitive parameters are as follows: 12 

MLME-SETKEYS.request  ( 13 
Keylist 14 
) 15 

 16 

Name Type Valid range Description 

Keylist A set of 
KeyIdentifiers 

N/A The list of keys to be used by the 
MAC. 

 17 

Each KeyIdentifier consists of the following elements: 18 

Name Type Valid range Description 

Key Bit string N/A The key value 

Length Integer N/A The number of bits in the Key to be 
used. 

Index Integer N/A Key Index 

Type Integer Group, Pairwise Defines whether this key is a Group 
or Pairwise key. 
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Tx Boolean TRUE, FALSE This parameter indicates if this key is 
to be used for transmission and 
reception or just reception. 

Address MAC Address Any valid 
individual MAC 
address 

This parameter is valid only when the 
key type is Pairwise and contains an 
IEEE 802 address 

Receive Sequence Count 8 octets N/A Value the receive sequence counter 
should be initialized to 

Authenticator/Supplicant Boolean TRUE, FALSE Whether the key is set by the 
Authenticator or Supplicant. IEEE 
802.11 uses this to select the correct 
integrity key when Michael is used. 

10.3.11.1.3  When Generated 1 

This primitive is generated by the SME at any time when one or more keys are to be set in the MAC. 2 

10.3.11.1.4  Effect of Receipt 3 

Receipt of this primitive causes the MAC to set the appropriate keys and to begin using them as indicated. If 4 
the AES-based privacy algorithm is being used for unicast traffic over this association, the MAC derives the 5 
keys as specified in 8.3.2.3.4. 6 

10.3.11.2  MLME-SETKEYS.confirm 7 

10.3.11.2.1  Function 8 

This primitive confirms that the action of the associated MLME-SETKEYS.request has been completed. 9 

10.3.11.2.2  Semantics of the service primitive 10 

This primitive has no parameters. 11 

10.3.11.2.3  When Generated 12 

This primitive is generated by the MAC in response to receipt of a MLME-SETKEYS.request primitive. 13 
This primitive is issued when the action requested has been completed. 14 

10.3.11.2.4  Effect of Receipt 15 

The SME is notified that the requested action of the MLME-SETKEYS.request is completed. 16 

10.3.12 DeleteKeys 17 

10.3.12.1  MLME-DELETEKEYS.request 18 

10.3.12.1.1  Function 19 

This primitive causes the keys identified in the parameters of the primitive to be deleted from the MAC and 20 
thus disabled for use.  21 
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10.3.12.1.2  Semantics of the Service Primitive 1 

The primitive parameters are as follows: 2 

MLME-DELETEKEYS.request  ( 3 
Keylist, 4 
) 5 

 6 

Name Type Valid range Description 
Keylist 

A set of 
KeyIdentifiers 

N/A The list of keys to be deleted from the 
MAC 

 7 

Each KeyIdentifier consists of the following elements: 8 

Name Type Valid range Description 

Address MAC Address Any valid 
individual MAC 
address 

This parameter is valid only when the 
key type is Pairwise and contains an 
802 address 

10.3.11.1.3  When Generated 9 

This primitive is generated by the SME at any time when keys for a security association are to be deleted in 10 
the MAC. 11 

10.3.11.1.4  Effect of Receipt 12 

Receipt of this primitive causes the MAC to 13 

1. Delete the appropriate keys, both group and pairwise and to cease using them.  14 

2. Set aHaveGTK to FALSE 15 

3. Set aHavePTK to FALSE 16 

10.3.12.2  MLME-DELETEKEYS.confirm 17 

10.3.12.2.1  Function 18 

This primitive confirms that the action of the associated MLME-DELETEKEYS.request has been 19 
completed. 20 

10.3.12.2.2  Semantics of the service primitive 21 

This primitive has no parameters. 22 

10.3.12.2.3  When Generated 23 

This primitive is generated by the MAC in response to receipt of a MLME-DELETEKEYS.request 24 
primitive. This primitive is issued when the action requested has been completed. 25 
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10.3.12.2.4  Effect of Receipt 1 

The SME is notified that the requested action of the MLME-DELETEKEYS.request is completed. 2 
 3 

Insert the following clause: 4 

11.3.1 Stations association procedures 5 
Change the text of Clause 11.3.1 from: 6 

Upon receipt of an MLME-ASSOCIATE.request, a STA shall associate with an AP via the following 7 
procedure: 8 

a) The STA shall transmit an association request to an AP with which that STA is authenticated. 9 

b) If an Association Response frame is received with a status value of “successful,” the STA is now 10 
associated with the AP and the MLME shall issue an MLME-ASSOCIATE.confirm indicating the 11 
successful completion of the operation. 12 

c) If an Association Response frame is received with a status value other than “successful” or the 13 
AssociateFailureTimeout expires, the STA is not associated with the AP and the MLME shall issue 14 
an MLME-ASSOCIATE.confirm indicating the failure of the operation. 15 

to: 16 

Upon receipt of an MLME-ASSOCIATE.request, a STA shall associate with an AP via the following 17 
procedure: 18 

a) The STA shall transmit an association request to an AP with which that STA is authenticated. If 19 
the STA is operating in an RSN, the STA shall include the RSN IE with only one pairwaise key 20 
cipher suite and only one authenticated key suite. 21 

b) If an Association Response frame is received with a status value of “successful,” the STA is now 22 
associated with the AP and the MLME shall issue an MLME-ASSOCIATE.confirm indicating the 23 
successful completion of the operation. 24 

c) If an Association Response frame is received with a status value other than “successful” or the 25 
AssociateFailureTimeout expires, the STA is not associated with the AP and the MLME shall issue 26 
an MLME-ASSOCIATE.confirm indicating the failure of the operation. 27 

11.3.2 AP association procedures 28 
Change the text of Clause 11.3.2 from: 29 

An AP shall operate as follows in order to support the association of STAs. 30 

a) Whenever an Association Request frame is received from a STA and the STA is authenticated, the 31 
AP shall transmit an association response with a status code as defined in 7.3.1.9. If the status 32 
value is “successful,” the Association ID assigned to the STA shall be included in the response. If 33 
the STA is not authenticated, the AP shall transmit a Deauthentication frame to the STA. 34 

b) When the association response with a status value of “successful” is acknowledged by the STA, the 35 
STA is considered to be associated with this AP. 36 
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c) The AP shall inform the distribution system (DS) of the association and the MLME shall issue an 1 
MLME-ASSOCIATE.indication. 2 

to: 3 

An AP shall operate as follows in order to support the association of STAs. 4 

a) Whenever an Association Request frame is received from a STA and the STA is authenticated, the 5 
AP shall transmit an association response with a status code as defined in 7.3.1.9. If the AP is 6 
operating as an RSN, the AP will check the values received in the RSN IE, to see if the values 7 
received match the APs security policy. If the status value is “successful,” the Association ID 8 
assigned to the STA shall be included in the response. If the STA is not authenticated, the AP shall 9 
transmit a Deauthentication frame to the STA. 10 

b) When the association response with a status value of “successful” is acknowledged by the STA, the 11 
STA is considered to be associated with this AP. 12 

c) The AP shall inform the distribution system (DS) of the association and the MLME shall issue an 13 
MLME-ASSOCIATE.indication. 14 

11.3.4 AP Reassociation procedures 15 
Change the text of Clause 11.3.4 from: 16 

An AP shall operate as follows in order to support the Reassociation of STAs. 17 

a) Whenever a Reassociation Request frame is received from a STA and the STA is authenticated, 18 
the AP shall transmit a Reassociation response with a status value as defined in 7.3.1.9. If the 19 
status value is “successful,” the Association ID assigned to the STA shall be included in the 20 
response. If the STA is not authenticated, the AP shall transmit a Deauthentication frame to the 21 
STA. 22 

b) When the Reassociation response with a status value of “successful” is acknowledged by the STA, 23 
the STA is considered to be associated with this AP. 24 

c) The AP shall inform the DS of the Reassociation and the MLME shall issue an MLME-25 
REASSOCIATE. indication. 26 

to: 27 

An AP shall operate as follows in order to support the Reassociation of STAs. 28 

a) Whenever a Reassociation Request frame is received from a STA and the STA is authenticated, 29 
the AP shall transmit a Reassociation response with a status value as defined in 7.3.1.9. If the AP is 30 
operating as an RSN, the AP will check the values received in the RSN IE, to see if the values 31 
received match the APs security policy. If the status value is “successful,” the Association ID 32 
assigned to the STA shall be included in the response. If the STA is not authenticated, the AP shall 33 
transmit a Deauthentication frame to the STA. 34 

b) When the Reassociation response with a status value of “successful” is acknowledged by the STA, 35 
the STA is considered to be associated with this AP. 36 

c) The AP shall inform the DS of the Reassociation and the MLME shall issue an MLME-37 
REASSOCIATE. indication. 38 
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Annex A (normative) Protocol Implementation Conformance Statements 1 
(PICS) 2 
Add the following text to this annex, where “X” in PCX is the next number for the protocol 3 
capabilities: 4 

Item Protocol Capability References Status Support 
 Are the following MAC protocol 

capabilities supported? 
   

PCX Robust Security Network  O Yes o No o 
PCX.1  RSN IE 7.3.2.17 PCX:M, 

FT1:M, FR1:M, 
FT3:M, FR3:M, 
FT6:M, FR6:M, 
FT7:M, FR7:M 

Yes o No o 

 PCX.1.1   Group Key Cipher Suite 7.3.2.17 PCX.1:M Yes o No o 
 PCX.1.2   Pairwise Key Cipher Suite List 7.3.2.17 PCX.1:M Yes o No o 
 PCX.1.2.1    CCMP data privacy protocol 8.3.4 PCX:M Yes o No o 
  PCX.1.2.1.1     CCMP encapsulation procedure 8.3.4.1.1 PCX.1.2.1:M Yes o No o 
  PCX.1.2.1.2     CCMP decapsulation procedure 8.3.4.1.2 PCX.1.2.1:M Yes o No o 
  PCX.1.2.1.3     CCMP Security Serv. Mng.  M Yes o No o 
 PCX.1.2.2    TKIP data privacy protocol 8.3.2 O Yes o No o 
  PCX.1.2.2.1     TKIP encapsulation procedure 8.3.2.1.1 PCX.1.2.2:M Yes o No o 
  PCX.1.2.2.2     TKIP decapsulation procedure 8.3.2.1.2 PCX.1.2.2:M Yes o No o 
  PCX.1.2.2.3     TKIP counter measures 8.3.2.4.2 PCX.1.2.2:M Yes o No o 
  PCX.1.2.2.4     TKIP Security Serv. Mng.  M Yes o No o 
 PCX.1.2.3    WRAP data privacy protocol 8.3.3 O Yes o No o 
  PCX.1.2.3.1     WRAP encapsulation procedure 8.3.3.1.1 PCX.1.2.3:M Yes o No o 
  PCX.1.2.3.2     WRAP decapsulation procedure 8.3.3.1.2 PCX.1.2.3:M Yes o No o 
  PCX.1.2.3.3     WRAP Security Serv. Mng.  M Yes o No o 
 PCX.1.3   Auth. Key Mng. Suite List 7.3.2.17 PCX.1:M Yes o No o 
 PCX.1.3.1    Unspec. EAP/802.11i Key Mng. 7.3.2.17 PCX.1:M Yes o No o 
 PCX.1.3.2    Preshard key/802.11i Key Mng. 7.3.2.17 PCX.1:M Yes o No o 
 PCX.1.3.3    802.11i Key Mng. 8.5 PCX.1:M Yes o No o 
  PCX.1.3.3.1     Key Hierarchy 8.5 PCX.1:M Yes o No o 
  PCX.1.3.3.1.1      Pairwise Key Hierarchy 8.5.1.2 PCX.1:M Yes o No o 
  PCX.1.3.3.1.2      Group Key Hierarchy 8.5.1.3 PCX.1:M Yes o No o 
  PCX.1.3.3.2     4 way handshake 8.5.3 PCX.1:M Yes o No o 
  PCX.1.3.3.3     Group key handshake 8.5.4 PCX.1:M Yes o No o 
 PCX.1.4   RSN Capabilities 7.3.2.17 PCX.1:M Yes o No o 

 5 
End of annex A text changes 6 

Annex C (normative) Formal description of MAC operation 7 
Delete the text of this annex. 8 

 9 

Annex D (normative) ASN.1 encoding of the MAC and PHY MIB 10 
Update following MIB entries in Annex D: 11 

Add the following attribute to the dot11StationConfigTable in Annex D: 12 
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dot11RSNOptionImplemented OBJECT-TYPE 1 
SYNTAX  TruthValue 2 
MAX-ACCESS read-only 3 
STATUS  current 4 
DESCRIPTION 5 

"This variable indicates whether the entity is RSN-capable." 6 
::= { dot11StationConfigEntry 24 } 7 

Add the following attribute to the dot11PrivacyTable in Annex D: 8 
dot11RSNEnabled OBJECT-TYPE 9 

SYNTAX  TruthValue 10 
MAX-ACCESS read-write 11 
STATUS  current 12 
DESCRIPTION 13 

"When this object is set to TRUE, this shall indicate that 14 
RSN is enabled on this entity. The entity will advertise the 15 
RSN Information Element in its Beacons and Probe Responses. 16 
Configuration variables for RSN operation  are found in the 17 
dot11RSNConfigTable.  18 

This object requires that dot11PrivacyInvoked also be set to 19 
TRUE. " 20 

::= { dot11PrivacyEntry 7 } 21 
 22 

Change the DESCRIPTION clause of object dot11PrivacyInvoked in Annex D from: 23 

"When this attribute is true, it shall indicate that the IEEE 802.11 WEP 24 
mechanism is used for transmitting frames of type Data. The default value 25 
of this attribute shall be false." 26 

to: 27 

"When this attribute is TRUE, it shall indicate that some level of  28 
security is invoked for transmitting frames of type Data. For  802.11-29 
1999 clients, the security mechanism used is WEP.  30 

For RSN-capable clients, an additional variable dot11RSNEnabled indicates 31 
whether RSN is enabled. If dot11RSNEnabled is FALSE, the security 32 
mechanism invoked  is WEP; if dot11RSNEnabled is TRUE, RSN security 33 
mechanisms invoked are configured in the dot11RSNConfigTable. The default 34 
value of this attribute shall be FALSE. " 35 

 36 
Add to dot11StationConfigEntry 37 

dot11TKIPNumberOfReplayCounters Integer 38 

 39 
Add definition of dot11TKIPNumberOfReplayCounters 40 

dot11TKIPNumberOfReplayCounters 41 
SYNTAX INTEGER 42 
MAX-ACCESS read-only 43 
STATUS current 44 
DESCRIPTION 45 

"Specifies the number of replay counters: 0 – 1 replay 46 
counter, 1 – 2 replay counters, 2 – 4 replay counters, 3 – 47 
16 replay counters" 48 

::= { dot11StationConfigEntry 2 } 49 
 50 

Incorporate the following text as the IEEE 802.11i MIB (in the correct Annex: D) 51 

-- 52 
--  IEEE 802.11i MIB 53 
-- 54 
 55 
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IEEE802dot11i-MIB DEFINITIONS ::= BEGIN 1 
IMPORTS 2 

MODULE-IDENTITY, OBJECT-TYPE, Integer32, Unsigned32, 3 
Counter32 4 

FROM SNMPv2-SMI 5 

DisplayString, MacAddress, TruthValue 6 
FROM SNMPv2-TC 7 

ieee802dot11  8 
FROM IEEE802dot11-MIB 9 

InterfaceIndexOrZero 10 
FROM IF-MIB; 11 

ieee802dot11i MODULE-IDENTITY 12 
LAST-UPDATED "0209100000Z" 13 
ORGANIZATION "IEEE 802.11" 14 
CONTACT-INFO  15 

  "WG E-mail: stds-802-11@ieee.org 16 
 17 

Chair:  Stuart J. Kerry 18 
Postal: Philips Semiconductors, Inc. 19 

1109 McKay Drive 20 
M/S 48 SJ 21 
San Jose, CA 95130-1706  USA 22 

Tel:  +1 408 474 7356 23 
Fax:  +1 408 474 7247 24 
E-mail: stuart.kerry@philips.com 25 

TGi Chair: David Halasz 26 
Postal: 27 
Tel: 28 
Fax: 29 
E-mail: dhala@cisco.com 30 

Technical Editor: Jesse R. Walker 31 
Postal: Intel Corporation 32 

JF3-466 33 
2111 N.E. 25th Avenue 34 
Hillsboro, OR 97124-5961 USA 35 

Tel:  +1 503 712 1849 36 
Fax: 37 
Email:  jesse.walker@intel.com 38 
" 39 

DESCRIPTION 40 
"The MIB module for 802.11 entities implementing 802.11i 41 
(RSN/TSN)." 42 

::= { ieee802dot11 7 } 43 
 44 
-- 45 
--  Robust Security Network (RSN (and TSN)) Configuration 46 
-- 47 
 48 
dot11RSNConfigTable OBJECT-TYPE 49 

SYNTAX  SEQUENCE OF Dot11RSNConfigEntry 50 
MAX-ACCESS not-accessible 51 
STATUS  current 52 
DESCRIPTION  53 

"The table containing RSN/TSN configuration objects." 54 
::= { ieee802dot11i 1 } 55 

 56 
dot11RSNConfigEntry OBJECT-TYPE 57 
SYNTAX  Dot11RSNConfigEntry 58 

MAX-ACCESS not-accessible 59 
STATUS  current 60 
DESCRIPTION 61 

"An entry in the dot11RSNConfigTable." 62 
INDEX { dot11RSNConfigIndex } 63 
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::= { dot11RSNConfigTable 1 } 1 

Dot11RSNConfigEntry ::=  2 
SEQUENCE { 3 

dot11RSNConfigIndex   InterfaceIndexOrZero, 4 
dot11RSNConfigVersion   Integer32, 5 
dot11RSNConfigPairwiseKeysSupported Unsigned32, 6 
dot11RSNConfigMulticastCipher  OCTET STRING, 7 
dot11RSNConfigGroupRekeyMethod  INTEGER, 8 
dot11RSNConfigGroupRekeyTime  Unsigned32, 9 
dot11RSNConfigGroupRekeyPackets  Unsigned32, 10 
dot11RSNConfigGroupRekeyStrict  TruthValue, 11 
dot11RSNConfigPSKValue   OCTET STRING, 12 
dot11RSNConfigPSKPassPhrase  DisplayString, 13 
dot11RSNConfigTSNEnabled   TruthValue, 14 
dot11RSNConfigGroupMasterRekeyTime Unsigned32, 15 
dot11RSNConfigGroupUpdateTimeOut  Unsigned32, 16 
dot11RSNConfigGroupUpdateCount  Unsigned32, 17 
dot11RSNConfigPairwiseUpdateTimeOut Unsigned32, 18 
dot11RSNConfigPairwiseUpdateCount  Unsigned32 19 

} 20 

dot11RSNConfigIndex OBJECT-TYPE 21 
SYNTAX  InterfaceIndexOrZero 22 
MAX-ACCESS not-accessible 23 
STATUS  current 24 
DESCRIPTION 25 

"Each 802.11 interface is represented by an entry in the 26 
ifTable. If this index is zero, the information in this 27 
table shall apply to all 802.11 interfaces." 28 

::= { dot11RSNConfigEntry 1 } 29 

dot11RSNConfigVersion OBJECT-TYPE 30 
SYNTAX  Integer32 31 
MAX-ACCESS read-only 32 
STATUS  current 33 
DESCRIPTION 34 

"The highest RSN version this entity supports." 35 
::= { dot11RSNConfigEntry 2 } 36 

dot11RSNConfigPairwiseKeysSupported OBJECT-TYPE 37 
SYNTAX  Unsigned32 (0..4294967295) 38 
MAX-ACCESS read-only 39 
STATUS  current 40 
DESCRIPTION 41 

"This object indicates how many pairwise keys the entity 42 
supports for RSN. When zero, it only supports (four) default 43 
keys." 44 

::= { dot11RSNConfigEntry 3 } 45 

dot11RSNConfigMulticastCipher OBJECT-TYPE 46 
SYNTAX  OCTET STING (SIZE(4)) 47 
MAX-ACCESS read-write 48 
STATUS  current 49 
DESCRIPTION 50 

"This object indicates the multicast cipher suite selector 51 
the entity must use. The multicast cipher suite in the RSN 52 
Information Element shall take its value from this variable. 53 
It consists of an OUI (the three most significant octets) 54 
and a cipher suite identifier (the least significant octet). 55 

The network administrator can always override the 56 
automatically selected multicast cipher suite by writing 57 
this object." 58 

::= { dot11RSNConfigEntry 4 } 59 

dot11RSNConfigGroupRekeyMethod OBJECT-TYPE 60 
SYNTAX  INTEGER { disabled(1), timeBased(2), packetBased(3) } 61 
MAX-ACCESS read-write 62 
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STATUS  current 1 
DESCRIPTION 2 

"This object selects a mechanism for rekeying the RSN Group 3 
Key. The default is time-based, once per day. Rekeying the 4 
Group key is only applicable to an entity acting in the 5 
Authenticator role (an AP in an ESS)." 6 

DEFVAL  { timeBased } 7 
::= { dot11RSNConfigEntry 5 } 8 

dot11RSNConfigGroupRekeyTime OBJECT-TYPE 9 
SYNTAX  Unsigned32 (1..4294967295) 10 
UNITS  "seconds" 11 
MAX-ACCESS read-write 12 
STATUS  current 13 
DESCRIPTION 14 

"The time in seconds after which the RSN group key must be 15 
refreshed. The timer shall start at the moment the group key 16 
was set using the MLME-SetKeys primitive. 17 

The fine granularity (seconds) also enables the network 18 
Administrator to ‘immediately’ refresh the group key." 19 

DEFVAL  { 86400 } -- once per day 20 
::= { dot11RSNConfigEntry 6 } 21 

dot11RSNConfigGroupRekeyPackets OBJECT-TYPE 22 
SYNTAX  Unsigned32 (1..4294967295) 23 
UNITS  "1000 packets" 24 
MAX-ACCESS read-write 25 
STATUS  current 26 
DESCRIPTION 27 

"A packet count (in 1000s of packets) after which the RSN 28 
group key shall be refreshed. The packet counter shall start 29 
at the moment the group key was set using the MLME-SetKeys 30 
primitive and it shall count all packets encrypted using the 31 
current group key." 32 

::= { dot11RSNConfigEntry 7 } 33 

dot11RSNConfigGroupRekeyStrict OBJECT-TYPE 34 
SYNTAX  TruthValue 35 
MAX-ACCESS read-write 36 
STATUS  current 37 
DESCRIPTION 38 

"This object signals that the group key shall be refreshed 39 
whenever a Station leaves the BSS." 40 

::= { dot11RSNConfigEntry 8 } 41 

dot11RSNConfigPSKValue OBJECT-TYPE 42 
SYNTAX  OCTET STRING (SIZE(32)) 43 
MAX-ACCESS read-write   44 
STATUS  current  45 
DESCRIPTION 46 

"The Pre-Shared Key (PSK) for when RSN in PSK mode is the 47 
selected authentication suite. In that case, the PMK will 48 
obtain its value from this object.  49 

This object is logically write-only. Reading this variable 50 
shall return unsuccessful status or null or zero." 51 

::= { dot11RSNConfigEntry 9 } 52 

dot11RSNConfigPSKPassPhrase OBJECT-TYPE 53 
SYNTAX  DisplayString 54 
MAX-ACCESS read-write 55 
STATUS  current 56 
DESCRIPTION 57 

"The PSK, for when RSN in PSK mode is the selected 58 
authentication suite, is configured by 59 
dot11RSNConfigPSKValue. 60 

An alternative manner of setting the PSK uses the password-61 
to-key algorithm defined in section XXX. This variable 62 
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provides a means to enter a pass phrase. When this object is 1 
written, the RSN entity shall use the password-to-key 2 
algorithm specified in section XXX to derive a pre-shared 3 
and populate dot11RSNConfigPSKValue with this key. 4 

This object is logically write-only. Reading this variable 5 
shall return unsuccessful status or null or zero." 6 

::= { dot11RSNConfigEntry 10 } 7 

dot11RSNConfigTSNEnabled OBJECT-TYPE 8 
SYNTAX  TruthValue 9 
MAX-ACCESS read-write 10 
STATUS  current 11 
DESCRIPTION 12 

"When dot11PrivacyInvoked and dot11RSNEnabled are both set 13 
to TRUE, signaling that RSN is enabled on this entity, this 14 
object shall indicate the entity also supports pre-RSN 15 
clients (with or without an IEEE 802.1X supplicant), also 16 
referred to as a Transitional Security Network (TSN)." 17 

::= { dot11RSNConfigEntry 11 } 18 

dot11RSNConfigGroupMasterRekeyTime OBJECT-TYPE 19 
SYNTAX  Unsigned32 (1..4294967295) 20 
UNITS  "seconds" 21 
MAX-ACCESS read-write 22 
STATUS  current 23 
DESCRIPTION 24 

"The time in seconds after which the RSN group master key 25 
must be changed. The timer shall start at the moment the 26 
group master key was set. 27 

A group key refresh will occur on a group master key change. 28 

The fine granularity (seconds) also enables the network 29 
Administrator to ‘immediately’ refresh the group master 30 
key." 31 

DEFVAL  { 7604800 } – 604800 = 7*86400, once per week 32 
::= { dot11RSNConfigEntry 12 } 33 

dot11RSNConfigGroupUpdateTimeOut OBJECT-TYPE 34 
SYNTAX  Unsigned32 (1..4294967295) 35 
UNITS  "mili-seconds" 36 
MAX-ACCESS read-write 37 
STATUS  current 38 
DESCRIPTION 39 

"The time in mili-seconds after which the RSN group update 40 
handshake will be retried. The timer shall start at the 41 
moment the group update message is sent." 42 

DEFVAL  { 100 } --  43 
::= { dot11RSNConfigEntry 13 } 44 

dot11RSNConfigGroupUpdateCount OBJECT-TYPE 45 
SYNTAX  Unsigned32 (1..4294967295) 46 
MAX-ACCESS read-write 47 
STATUS  current 48 
DESCRIPTION 49 

"The number of times the RSN Group update will be retried." 50 
DEFVAL  { 3 } --  51 
::= { dot11RSNConfigEntry 14 } 52 

dot11RSNConfigPairwiseUpdateTimeOut OBJECT-TYPE 53 
SYNTAX  Unsigned32 (1..4294967295) 54 
UNITS  "mili-seconds" 55 
MAX-ACCESS read-write 56 
STATUS  current 57 
DESCRIPTION 58 

"The time in mili-seconds after which the RSN 4-way 59 
handshake will be retried. The timer shall start at the 60 
moment a 4-way message is sent." 61 

DEFVAL  { 100 } --  62 
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::= { dot11RSNConfigEntry 15 } 1 

dot11RSNConfigPairwiseUpdateCount OBJECT-TYPE 2 
SYNTAX  Unsigned32 (1..4294967295) 3 
MAX-ACCESS read-write 4 
STATUS  current 5 
DESCRIPTION 6 

"The number of times the RSN 4-way handshake will be 7 
retried." 8 

DEFVAL  { 3 } --  9 
::= { dot11RSNConfigEntry 16 } 10 

-- 11 
--  Unicast Cipher Suite configuration table 12 
-- 13 

dot11RSNConfigUnicastCiphersTable OBJECT-TYPE 14 
SYNTAX  SEQUENCE OF Dot11RSNConfigUnicastCiphersEntry 15 
MAX-ACCESS not-accessible 16 
STATUS  current 17 
DESCRIPTION 18 

"This table lists the unicast ciphers supported by this 19 
entity. It allows enabling and disabling of each unicast 20 
cipher by network management. The Unicast Cipher Suite list 21 
in the RSN Information Element is formed using the 22 
information in this table." 23 

::= { ieee802dot11i 2 } 24 

dot11RSNConfigUnicastCiphersEntry OBJECT-TYPE 25 
SYNTAX  Dot11RSNConfigUnicastCiphersEntry 26 
MAX-ACCESS not-accessible 27 
STATUS  current 28 
DESCRIPTION 29 

"The table entry, indexed by the interface index (or all 30 
interfaces) and the unicast cipher." 31 

INDEX { dot11RSNConfigIndex, dot11RSNConfigUnicastCipherIndex } 32 
::= { dot11RSNConfigUnicastCiphersTable 1 } 33 

Dot11RSNConfigUnicastCiphersEntry ::=  34 
SEQUENCE { 35 

dot11RSNConfigUnicastCipherIndex Unsigned32, 36 
dot11RSNConfigUnicastCipher  OCTET STRING, 37 
dot11RSNConfigUnicastCipherEnabled TruthValue  } 38 

dot11RSNConfigUnicastCipherIndex OBJECT-TYPE 39 
SYNTAX  Unsigned32 (1..4294967295) 40 
MAX-ACCESS not-accessible 41 
STATUS  current 42 
DESCRIPTION 43 

"The auxiliary index into the 44 
dot11RSNConfigUnicastCiphersTable." 45 

::= { dot11RSNConfigUnicastCiphersEntry 1 } 46 

dot11RSNConfigUnicastCipher OBJECT-TYPE 47 
SYNTAX  OCTET STRING (SIZE(4)) 48 
MAX-ACCESS read-only 49 
STATUS  current 50 
DESCRIPTION 51 

"The selector of a supported unicast cipher. It consists of 52 
an OUI (the three most significant octets) and a cipher 53 
suite identifier (the least significant octet)." 54 

::= { dot11RSNConfigUnicastCiphersEntry 2 } 55 

dot11RSNConfigUnicastCipherEnabled OBJECT-TYPE 56 
SYNTAX  TruthValue 57 
MAX-ACCESS read-write 58 
STATUS  current 59 
DESCRIPTION 60 

"This object enables or disables the unicast cipher." 61 
::= { dot11RSNConfigUnicastCiphersEntry 3 } 62 
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-- 1 
--  The Authentication Suites Table 2 
-- 3 
dot11RSNConfigAuthenticationSuitesTable OBJECT-TYPE 4 

SYNTAX  SEQUENCE OF Dot11RSNConfigAuthenticationSuitesEntry 5 
MAX-ACCESS  not-accessible 6 
STATUS  current 7 
DESCRIPTION 8 

"This table lists the authentication suites supported by 9 
this entity. Each authentication suite can be individually 10 
enabled and disabled. The Authentication Suite List in the 11 
RSN IE is formed using the information in this table." 12 

::= { ieee802dot11i 3 } 13 

dot11RSNConfigAuthenticationSuitesEntry OBJECT-TYPE 14 
SYNTAX  Dot11RSNConfigAuthenticationSuitesEntry 15 
MAX-ACCESS  not-accessible 16 
STATUS  current 17 
DESCRIPTION 18 

"An entry (row) in the 19 
dot11RSNConfigAuthenticationSuitesTable." 20 

INDEX { dot11RSNConfigAuthenticationSuiteIndex } 21 
::= { dot11RSNConfigAuthenticationSuitesTable 1 } 22 

Dot11RSNConfigAuthenticationSuitesEntry ::=  23 
SEQUENCE { 24 

dot11RSNConfigAuthenticationSuiteIndex  Unsigned32, 25 
dot11RSNConfigAuthenticationSuite  OCTET STRING, 26 
dot11RSNConfigAuthenticationSuiteEnabled TruthValue } 27 

dot11RSNConfigAuthenticationSuiteIndex OBJECT-TYPE 28 
SYNTAX  Unsigned32 (1..4294967295) 29 
MAX-ACCESS not-accessible 30 
STATUS  current 31 
DESCRIPTION 32 

"The auxiliary variable used as an index into the 33 
dot11RSNConfigAuthenticationSuitesTable." 34 

::= { dot11RSNConfigAuthenticationSuitesEntry 1 } 35 

dot11RSNConfigAuthenticationSuite OBJECT-TYPE 36 
SYNTAX  OCTET STRING (SIZE(4)) 37 
MAX-ACCESS read-only 38 
STATUS  current 39 
DESCRIPTION 40 

"The selector of an authentication suite. It consists of an 41 
OUI (the three most significant octets) and a cipher suite 42 
identifier (the least significant octet). " 43 

::= { dot11RSNConfigAuthenticationSuitesEntry 2 } 44 

dot11RSNConfigAuthenticationSuiteEnabled OBJECT-TYPE 45 
SYNTAX  TruthValue 46 
MAX-ACCESS read-write 47 
STATUS  current 48 
DESCRIPTION 49 

"This variable indicates whether the corresponding 50 
authentication suite is enabled/disabled." 51 

::= { dot11RSNConfigAuthenticationSuitesEntry 3 } 52 

-- 53 
--  RSN/TSN statistics  54 
-- 55 

dot11RSNStatsTable OBJECT-TYPE 56 
SYNTAX  SEQUENCE OF Dot11RSNStatsEntry 57 
MAX-ACCESS not-accessible 58 
STATUS  current 59 
DESCRIPTION 60 

"This table maintains per-STA statistics for SN. The entry 61 
with dot11RSNStatsSTAAddress set to FF-FF-FF-FF-FF-FF shall 62 
contain statistics for broadcast/multicast traffic." 63 
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::= { ieee802dot11i 4 } 1 

dot11RSNStatsEntry OBJECT-TYPE 2 
SYNTAX  Dot11RSNStatsEntry 3 
MAX-ACCESS not-accessible 4 
STATUS  current 5 
DESCRIPTION 6 

"An entry in the dot11RSNStatsTable." 7 
INDEX { dot11RSNConfigIndex, dot11RSNStatsIndex } 8 
::= { dot11RSNStatsTable 1 } 9 

Dot11RSNStatsEntry ::=  10 
SEQUENCE { 11 

dot11RSNStatsIndex    Unsigned32, 12 
dot11RSNStatsSTAAddress   MacAddress, 13 
dot11RSNStatsVersion   Unsigned32, 14 
dot11RSNStatsSelectedUnicastCipher OCTET STRING, 15 
dot11RSNStatsTKIPICVErrors   Counter32, 16 
dot11RSNStatsTKIPLocalMICFailures  Counter32, 17 
dot11RSNStatsTKIPRemoteMICFailures Counter32, 18 
dot11RSNStatsTKIPCounterMeasuresInvoked Counter32, 19 
dot11RSNStatsWRAPFormatErrors  Counter32, 20 
dot11RSNStatsWRAPReplays   Counter32, 21 
dot11RSNStatsWRAPDecryptErrors  Counter32, 22 
dot11RSNStatsCCMPFormatErrors  Counter32, 23 
dot11RSNStatsCCMPReplays   Counter32, 24 
dot11RSNStatsCCMPDecryptErrors  Counter32  } 25 

dot11RSNStatsIndex OBJECT-TYPE 26 
SYNTAX  Unsigned32 (1..4294967295) 27 
MAX-ACCESS not-accessible 28 
STATUS  current 29 
DESCRIPTION 30 

"An auxiliary index into the dot11RSNStatsTable." 31 
::= { dot11RSNStatsEntry 1 } 32 

dot11RSNStatsSTAAddress OBJECT-TYPE 33 
SYNTAX  MacAddress 34 
MAX-ACCESS read-only 35 
STATUS  current 36 
DESCRIPTION 37 

"The MAC address of the station the statistics in this 38 
conceptual row belong to." 39 

::= { dot11RSNStatsEntry 2 } 40 

dot11RSNStatsVersion OBJECT-TYPE 41 
SYNTAX  Unsigned32 (1..4294967295) 42 
MAX-ACCESS read-only 43 
STATUS  current 44 
DESCRIPTION 45 

"The RSN version which the station associated with." 46 
::= { dot11RSNStatsEntry 3 } 47 

dot11RSNStatsSelectedUnicastCipher OBJECT-TYPE 48 
SYNTAX  OCTET STRING (SIZE(4)) 49 
MAX-ACCESS read-only 50 
STATUS  current 51 
DESCRIPTION 52 

"The Authentication Suite the station selected during 53 
association. The value consists of a three octet OUI 54 
followed by a one octet Type as follows: 55 
 56 

OUI      Value Authentication Type          Key Management Type 57 
-------- ----- -------------------          ------------------- 58 
00:00:00 0     Reserved                     Reserved 59 
00:00:00 1     Unspecified authentication   802.1X Key Management 60 
                                            over 802.1X 61 
00:00:00 2     None                         802.1X Key Management 62 
                                            using pre-shared Key 63 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

--`,`,,,,``,,``,`,````,,,,,`,`,-`-`,,`,,`,`,,`---



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  138

00:00:00 3-255 Reserved                     Reserved 1 
Vendor   any   Vendor Specific              Vendor Specific 2 
other    any   Reserved                     Reserved" 3 
::= { dot11RSNStatsEntry 4 } 4 

dot11RSNStatsTKIPICVErrors OBJECT-TYPE 5 
SYNTAX  Counter32 6 
MAX-ACCESS read-only 7 
STATUS  current 8 
DESCRIPTION 9 

"Counts the number of TKIP ICV errors encountered when 10 
decrypting packets for the station." 11 

::= { dot11RSNStatsEntry 5 } 12 

dot11RSNStatsTKIPLocalMICFailures OBJECT-TYPE 13 
SYNTAX  Counter32 14 
MAX-ACCESS read-only 15 
STATUS  current 16 
DESCRIPTION 17 

"Counts the number of Michael MIC failure encountered when 18 
checking the integrity of packets received from the station 19 
at this entity." 20 

::= { dot11RSNStatsEntry 6 } 21 

dot11RSNStatsTKIPRemoteMICFailures OBJECT-TYPE 22 
SYNTAX  Counter32 23 
MAX-ACCESS read-only 24 
STATUS  current 25 
DESCRIPTION 26 

"Counts the number of Michael MIC failures encountered by 27 
the station identified by dot11StatsSTAAddress and reported 28 
back to this entity. " 29 

::= { dot11RSNStatsEntry 7 } 30 

dot11RSNStatsTKIPCounterMeasuresInvoked OBJECT-TYPE 31 
SYNTAX  Counter32 32 
MAX-ACCESS read-only 33 
STATUS  current 34 
DESCRIPTION  35 

"Counts the number of times a MIC failure occurred two times 36 
within 60 seconds and counter-measures were invoked. This 37 
variables counts this for both local and remote. It counts 38 
every time countermeasures are invoked. " 39 

::= { dot11RSNStatsEntry 8 } 40 

dot11RSNStatsWRAPFormatErrors OBJECT-TYPE 41 
SYNTAX  Counter32 42 
MAX-ACCESS read-only 43 
STATUS  current 44 
DESCRIPTION 45 

"The number of MSDUs received with an invalid WRAP format." 46 
::= { dot11RSNStatsEntry 9 } 47 

dot11RSNStatsWRAPReplays OBJECT-TYPE 48 
SYNTAX  Counter32 49 
MAX-ACCESS read-only 50 
STATUS  current 51 
DESCRIPTION 52 

"The number of received unicast fragments discarded by the 53 
replay mechanism." 54 

::= { dot11RSNStatsEntry 10 } 55 

dot11RSNStatsWRAPDecryptErrors OBJECT-TYPE 56 
SYNTAX  Counter32 57 
MAX-ACCESS read-only 58 
STATUS  current 59 
DESCRIPTION 60 

"The number of received fragments discarded by the OCB 61 
decryption mechanism." 62 

::= { dot11RSNStatsEntry 11 } 63 
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dot11RSNStatsCCMPFormatErrors OBJECT-TYPE 1 
SYNTAX  Counter32 2 
MAX-ACCESS read-only 3 
STATUS  current 4 
DESCRIPTION 5 

"The number of MSDUs received with an invalid CCMP format." 6 
::= { dot11RSNStatsEntry 12 } 7 

dot11RSNStatsCCMPReplays OBJECT-TYPE 8 
SYNTAX  Counter32 9 
MAX-ACCESS read-only 10 
STATUS  current 11 
DESCRIPTION 12 

"The number of received unicast fragments discarded by the 13 
replay mechanism." 14 

::= { dot11RSNStatsEntry 13 } 15 

dot11RSNStatsCCMPDecryptErrors OBJECT-TYPE 16 
SYNTAX  Counter32 17 
MAX-ACCESS read-only 18 
STATUS  current 19 
DESCRIPTION 20 

"The number of received fragments discarded by the CCMP 21 
decryption algorithm." 22 

::= { dot11RSNStatsEntry 14 } 23 

--  24 
--   TBD: OBJECT-GROUPs and MODULE-COMPLIANCE statements 25 
-- 26 

END 27 
 28 

Annex F (informative) RSN reference implementations and test vectors 29 

F.1 TKIP Temporal Key Mixing Function reference implementation and test vector 30 

This clause provides a “C” language reference implementation of the temporal key mixing function. 31 

 32 
/****************************************************************/ 33 
/* 802.11 TKIP Key Mixing Test Vector Generator                 */ 34 
/*                                                              */ 35 
/* The author has put this code in the public domain.           */ 36 
/*                                                              */ 37 
/* Author: David Johnston                                       */ 38 
/* Email: dj@mobilian.com                                       */ 39 
/* Version 0.1                                                  */ 40 
/*                                                              */ 41 
/****************************************************************/ 42 
  43 
#include <stdlib.h> 44 
#include <stdio.h> 45 
 46 
/********************************************/ 47 
/* Test Cases                               */ 48 
/* An array of test cases                   */ 49 
/********************************************/ 50 
#define NUM_TEST_CASES  8 51 
 52 
                                                            53 
unsigned long int test_case_pnl[] = { /* 2 lsbs of pn */ 54 

0x0000, 55 
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0x0001, 1 
0xffff, 2 
0x0000, 3 
0x058c, 4 
0x058d, 5 
0x30f8, 6 
0x30f9 7 

}; 8 
unsigned long int test_case_pnh[] = { /* 4 msbs of pn */ 9 

0x00000000,  10 
0x00000000,  11 
0x20dcfd43,  12 
0x20dcfd44,  13 
0xf0a410fc,  14 
0xf0a410fc,  15 
0x8b1573b7,  16 
0x8b1573b7 17 

}; 18 
 19 
unsigned char keys[] = 20 
{ 21 

0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, 22 
0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F, 23 
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, 24 
0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F, 25 
0x63,0x89,0x3B,0x25,0x08,0x40,0xB8,0xAE, 26 
0x0B,0xD0,0xFA,0x7E,0x61,0xD2,0x78,0x3E, 27 
0x63,0x89,0x3B,0x25,0x08,0x40,0xB8,0xAE, 28 
0x0B,0xD0,0xFA,0x7E,0x61,0xD2,0x78,0x3E, 29 
0x98,0x3A,0x16,0xEF,0x4F,0xAC,0xB3,0x51, 30 
0xAA,0x9E,0xCC,0x27,0x1D,0x73,0x09,0xE2, 31 
0x98,0x3A,0x16,0xEF,0x4F,0xAC,0xB3,0x51, 32 
0xAA,0x9E,0xCC,0x27,0x1D,0x73,0x09,0xE2, 33 
0xC8,0xAD,0xC1,0x6A,0x8B,0x4D,0xDA,0x3B, 34 
0x4D,0xD5,0xB6,0x54,0x38,0x35,0x9B,0x05, 35 
0xC8,0xAD,0xC1,0x6A,0x8B,0x4D,0xDA,0x3B, 36 
0x4D,0xD5,0xB6,0x54,0x38,0x35,0x9B,0x05 37 

}; 38 
 39 
unsigned char transmitter_addr[] = 40 
{ 41 

0x10,0x22,0x33,0x44,0x55,0x66, 42 
0x10,0x22,0x33,0x44,0x55,0x66, 43 
0x64,0xF2,0xEA,0xED,0xDC,0x25, 44 
0x64,0xF2,0xEA,0xED,0xDC,0x25, 45 
0x50,0x9C,0x4B,0x17,0x27,0xD9, 46 
0x50,0x9C,0x4B,0x17,0x27,0xD9, 47 
0x94,0x5E,0x24,0x4E,0x4D,0x6E, 48 
0x94,0x5E,0x24,0x4E,0x4D,0x6E 49 

}; 50 
 51 
/* The Sbox is reduced to 2 16-bit wide tables, each with 256 entries. */ 52 
/* The 2nd table is the same as the 1st but with the upper and lower   */ 53 
/* bytes swapped. To allow an endian tolerant implementation, the byte */ 54 
/* halves have been expressed independently here.                      */ 55 
 56 
unsigned int Tkip_Sbox_Lower[256] = 57 
{ 58 

0xA5,0x84,0x99,0x8D,0x0D,0xBD,0xB1,0x54, 59 
0x50,0x03,0xA9,0x7D,0x19,0x62,0xE6,0x9A, 60 
0x45,0x9D,0x40,0x87,0x15,0xEB,0xC9,0x0B, 61 
0xEC,0x67,0xFD,0xEA,0xBF,0xF7,0x96,0x5B, 62 
0xC2,0x1C,0xAE,0x6A,0x5A,0x41,0x02,0x4F, 63 
0x5C,0xF4,0x34,0x08,0x93,0x73,0x53,0x3F, 64 
0x0C,0x52,0x65,0x5E,0x28,0xA1,0x0F,0xB5, 65 
0x09,0x36,0x9B,0x3D,0x26,0x69,0xCD,0x9F, 66 
0x1B,0x9E,0x74,0x2E,0x2D,0xB2,0xEE,0xFB, 67 
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0xF6,0x4D,0x61,0xCE,0x7B,0x3E,0x71,0x97, 1 
0xF5,0x68,0x00,0x2C,0x60,0x1F,0xC8,0xED, 2 
0xBE,0x46,0xD9,0x4B,0xDE,0xD4,0xE8,0x4A, 3 
0x6B,0x2A,0xE5,0x16,0xC5,0xD7,0x55,0x94, 4 
0xCF,0x10,0x06,0x81,0xF0,0x44,0xBA,0xE3, 5 
0xF3,0xFE,0xC0,0x8A,0xAD,0xBC,0x48,0x04, 6 
0xDF,0xC1,0x75,0x63,0x30,0x1A,0x0E,0x6D, 7 
0x4C,0x14,0x35,0x2F,0xE1,0xA2,0xCC,0x39, 8 
0x57,0xF2,0x82,0x47,0xAC,0xE7,0x2B,0x95, 9 
0xA0,0x98,0xD1,0x7F,0x66,0x7E,0xAB,0x83, 10 
0xCA,0x29,0xD3,0x3C,0x79,0xE2,0x1D,0x76, 11 
0x3B,0x56,0x4E,0x1E,0xDB,0x0A,0x6C,0xE4, 12 
0x5D,0x6E,0xEF,0xA6,0xA8,0xA4,0x37,0x8B, 13 
0x32,0x43,0x59,0xB7,0x8C,0x64,0xD2,0xE0, 14 
0xB4,0xFA,0x07,0x25,0xAF,0x8E,0xE9,0x18, 15 
0xD5,0x88,0x6F,0x72,0x24,0xF1,0xC7,0x51, 16 
0x23,0x7C,0x9C,0x21,0xDD,0xDC,0x86,0x85, 17 
0x90,0x42,0xC4,0xAA,0xD8,0x05,0x01,0x12, 18 
0xA3,0x5F,0xF9,0xD0,0x91,0x58,0x27,0xB9, 19 
0x38,0x13,0xB3,0x33,0xBB,0x70,0x89,0xA7, 20 
0xB6,0x22,0x92,0x20,0x49,0xFF,0x78,0x7A, 21 
0x8F,0xF8,0x80,0x17,0xDA,0x31,0xC6,0xB8, 22 
0xC3,0xB0,0x77,0x11,0xCB,0xFC,0xD6,0x3A 23 

}; 24 
 25 
unsigned int Tkip_Sbox_Upper[256] = 26 
{ 27 

0xC6,0xF8,0xEE,0xF6,0xFF,0xD6,0xDE,0x91, 28 
0x60,0x02,0xCE,0x56,0xE7,0xB5,0x4D,0xEC, 29 
0x8F,0x1F,0x89,0xFA,0xEF,0xB2,0x8E,0xFB, 30 
0x41,0xB3,0x5F,0x45,0x23,0x53,0xE4,0x9B, 31 
0x75,0xE1,0x3D,0x4C,0x6C,0x7E,0xF5,0x83, 32 
0x68,0x51,0xD1,0xF9,0xE2,0xAB,0x62,0x2A, 33 
0x08,0x95,0x46,0x9D,0x30,0x37,0x0A,0x2F, 34 
0x0E,0x24,0x1B,0xDF,0xCD,0x4E,0x7F,0xEA, 35 
0x12,0x1D,0x58,0x34,0x36,0xDC,0xB4,0x5B, 36 
0xA4,0x76,0xB7,0x7D,0x52,0xDD,0x5E,0x13, 37 
0xA6,0xB9,0x00,0xC1,0x40,0xE3,0x79,0xB6, 38 
0xD4,0x8D,0x67,0x72,0x94,0x98,0xB0,0x85, 39 
0xBB,0xC5,0x4F,0xED,0x86,0x9A,0x66,0x11, 40 
0x8A,0xE9,0x04,0xFE,0xA0,0x78,0x25,0x4B, 41 
0xA2,0x5D,0x80,0x05,0x3F,0x21,0x70,0xF1, 42 
0x63,0x77,0xAF,0x42,0x20,0xE5,0xFD,0xBF, 43 
0x81,0x18,0x26,0xC3,0xBE,0x35,0x88,0x2E, 44 
0x93,0x55,0xFC,0x7A,0xC8,0xBA,0x32,0xE6, 45 
0xC0,0x19,0x9E,0xA3,0x44,0x54,0x3B,0x0B, 46 
0x8C,0xC7,0x6B,0x28,0xA7,0xBC,0x16,0xAD, 47 
0xDB,0x64,0x74,0x14,0x92,0x0C,0x48,0xB8, 48 
0x9F,0xBD,0x43,0xC4,0x39,0x31,0xD3,0xF2, 49 
0xD5,0x8B,0x6E,0xDA,0x01,0xB1,0x9C,0x49, 50 
0xD8,0xAC,0xF3,0xCF,0xCA,0xF4,0x47,0x10, 51 
0x6F,0xF0,0x4A,0x5C,0x38,0x57,0x73,0x97, 52 
0xCB,0xA1,0xE8,0x3E,0x96,0x61,0x0D,0x0F, 53 
0xE0,0x7C,0x71,0xCC,0x90,0x06,0xF7,0x1C, 54 
0xC2,0x6A,0xAE,0x69,0x17,0x99,0x3A,0x27, 55 
0xD9,0xEB,0x2B,0x22,0xD2,0xA9,0x07,0x33, 56 
0x2D,0x3C,0x15,0xC9,0x87,0xAA,0x50,0xA5, 57 
0x03,0x59,0x09,0x1A,0x65,0xD7,0x84,0xD0, 58 
0x82,0x29,0x5A,0x1E,0x7B,0xA8,0x6D,0x2C 59 

}; 60 
 61 
 62 
/*****************************/ 63 
/**** Function Prototypes ****/ 64 
/*****************************/ 65 
 66 
unsigned int tkip_sbox(unsigned int index); 67 
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unsigned int rotr1(unsigned int a); 1 
 2 
/* Mixes key from TA, TK and TSC */  3 
 4 
void mix_key( 5 

unsigned char   *key, 6 
unsigned char   *ta, 7 
unsigned long int pnl,  /* Least significant 16 bits of PN */ 8 
unsigned long int pnh,  /* Most significant 32 bits of PN */ 9 
unsigned char   *rc4key, 10 
unsigned int *p1kout 11 

); 12 
 13 
/************************************************************/ 14 
/* tkip_sbox()                                              */ 15 
/* Returns a 16 bit value from a 64K entry table. The Table */ 16 
/* is synthesized from two 256 entry byte wide tables.      */ 17 
/************************************************************/ 18 
 19 
unsigned int tkip_sbox(unsigned int index) 20 
{ 21 

unsigned int index_low; 22 
unsigned int index_high; 23 
unsigned int left, right; 24 

 25 
index_low = (index % 256); 26 
index_high = ((index >> 8) % 256); 27 

 28 
left = Tkip_Sbox_Lower[index_low] + (Tkip_Sbox_Upper[index_low] * 29 

256); 30 
right = Tkip_Sbox_Upper[index_high] + (Tkip_Sbox_Lower[index_high] 31 

* 256); 32 
 33 

return (left ^ right); 34 
}; 35 
 36 
/****************************************************/ 37 
/* mix_key()                                        */ 38 
/* Takes a key, PN and TK. Calculates an RC4 key.   */ 39 
/****************************************************/ 40 
 41 
unsigned int rotr1(unsigned int a) 42 
{ 43 

unsigned int b; 44 
 45 

if ((a & 0x01) == 0x01) 46 
{ 47 

b = (a >> 1) | 0x8000; 48 
} 49 
else 50 
{ 51 

b = (a >> 1) & 0x7fff; 52 
} 53 
b = b % 65536; 54 
return b; 55 

} 56 
 57 
void mix_key( 58 

unsigned char   *key, 59 
unsigned char   *ta, 60 
unsigned long int pnl,  /* Least significant 16 bits of PN */ 61 
unsigned long int pnh,  /* Most significant 32 bits of PN */ 62 
unsigned char   *rc4key, 63 
unsigned int *p1k 64 
) 65 

{ 66 
unsigned int ttak0;    /* 16 bit numbers */ 67 
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unsigned int ttak1; 1 
unsigned int ttak2; 2 
unsigned int ttak3; 3 
unsigned int ttak4; 4 

 5 
unsigned int tsc0; 6 
unsigned int tsc1; 7 
unsigned int tsc2; 8 

 9 
unsigned int ppk0; 10 
unsigned int ppk1; 11 
unsigned int ppk2; 12 
unsigned int ppk3; 13 
unsigned int ppk4; 14 
unsigned int ppk5; 15 

 16 
int i; 17 
int j; 18 

 19 
tsc0 = (unsigned int)((pnh >> 16) % 65536);  /* msb */ 20 
tsc1 = (unsigned int)(pnh % 65536); 21 
tsc2 = (unsigned int)(pnl % 65536); /* lsb */ 22 

 23 
/* Phase 1, step 1 */ 24 
p1k[0] = tsc1; 25 
p1k[1] = tsc0; 26 
p1k[2] = (unsigned int)(ta[0] + (ta[1]*256)); 27 
p1k[3] = (unsigned int)(ta[2] + (ta[3]*256)); 28 
p1k[4] = (unsigned int)(ta[4] + (ta[5]*256)); 29 

 30 
/* Phase 1, step 2 */ 31 
for (i=0; i<8; i++) 32 
{ 33 

j = 2*(i & 1); 34 
p1k[0] =  (p1k[0] + tkip_sbox( (p1k[4] ^ ((256*key[1+j]) + 35 
key[j])) % 65536 )) % 65536; 36 
p1k[1] =  (p1k[1] + tkip_sbox( (p1k[0] ^ ((256*key[5+j]) + 37 
key[4+j])) % 65536 )) % 65536; 38 
p1k[2] =  (p1k[2] + tkip_sbox( (p1k[1] ^ ((256*key[9+j]) + 39 
key[8+j])) % 65536 )) % 65536; 40 
p1k[3] =  (p1k[3] + tkip_sbox( (p1k[2] ^ ((256*key[13+j]) + 41 
key[12+j])) % 65536 )) % 65536; 42 
p1k[4] =  (p1k[4] + tkip_sbox( (p1k[3] ^ (((256*key[1+j]) + 43 
key[j]))) % 65536 )) % 65536; 44 
p1k[4] = (p1k[4] + i) % 65536; 45 

} 46 
 47 

/* Phase 2, Step 1 */ 48 
ppk0 = p1k[0]; 49 
ppk1 = p1k[1]; 50 
ppk2 = p1k[2]; 51 
ppk3 = p1k[3]; 52 
ppk4 = p1k[4]; 53 
ppk5 = (p1k[4] + tsc2) % 65536; 54 

 55 
/* Phase2, Step 2 */ 56 
ppk0 = ppk0 + tkip_sbox( (ppk5 ^ ((256*key[1]) + key[0])) % 57 

65536); 58 
ppk1 = ppk1 + tkip_sbox( (ppk0 ^ ((256*key[3]) + key[2])) % 59 

65536); 60 
ppk2 = ppk2 + tkip_sbox( (ppk1 ^ ((256*key[5]) + key[4])) % 61 

65536); 62 
ppk3 = ppk3 + tkip_sbox( (ppk2 ^ ((256*key[7]) + key[6])) % 63 

65536); 64 
ppk4 = ppk4 + tkip_sbox( (ppk3 ^ ((256*key[9]) + key[8])) % 65 

65536); 66 
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ppk5 = ppk5 + tkip_sbox( (ppk4 ^ ((256*key[11]) + key[10])) % 1 
65536); 2 

 3 
ppk0 = ppk0 + rotr1(ppk5 ^ ((256*key[13]) + key[12])); 4 
ppk1 = ppk1 + rotr1(ppk0 ^ ((256*key[15]) + key[14])); 5 
ppk2 = ppk2 + rotr1(ppk1); 6 
ppk3 = ppk3 + rotr1(ppk2); 7 
ppk4 = ppk4 + rotr1(ppk3); 8 
ppk5 = ppk5 + rotr1(ppk4); 9 

 10 
/* Phase 2, Step 3 */ 11 
rc4key[0] = (tsc2 >> 8) % 256; 12 
rc4key[1] = (((tsc2 >> 8) % 256) | 0x20) & 0x7f; 13 
rc4key[2] = tsc2 % 256; 14 
rc4key[3] = ((ppk5 ^ ((256*key[1]) + key[0])) >> 1) % 256; 15 

 16 
rc4key[4] = ppk0 % 256; 17 
rc4key[5] = (ppk0 >> 8) % 256; 18 

 19 
rc4key[6] = ppk1 % 256; 20 
rc4key[7] = (ppk1 >> 8) % 256; 21 

 22 
rc4key[8] = ppk2 % 256; 23 
rc4key[9] = (ppk2 >> 8) % 256; 24 

 25 
rc4key[10] = ppk3 % 256; 26 
rc4key[11] = (ppk3 >> 8) % 256; 27 

 28 
rc4key[12] = ppk4 % 256; 29 
rc4key[13] = (ppk4 >> 8) % 256; 30 

 31 
rc4key[14] = ppk5 % 256; 32 
rc4key[15] = (ppk5 >> 8) % 256; 33 

} 34 
 35 
/****************************************************/ 36 
/* main()                                           */ 37 
/* Iterate through the test cases, passing them     */ 38 
/* through the TKIP algorithm to produce test       */ 39 
/* vectors and verify decryption against encryption */ 40 
/****************************************************/ 41 
 42 
int main() 43 
{ 44 

int length; 45 
int test_case; 46 
int header_length; 47 
int payload_length; 48 
int a4_exists; 49 
int qc_exists; 50 
unsigned char plaintext_mpdu[3000]; 51 
unsigned char ciphertext_mpdu[3000]; 52 
/*unsigned char decrypted_mpdu[3000];*/ 53 
unsigned char *key; 54 
unsigned char *ta; 55 
unsigned char rc4key[16]; 56 
unsigned int p1k[5]; 57 
unsigned long int iv32; 58 
unsigned int iv16; 59 

 60 
unsigned int i; 61 

 62 
for (i=0; i<16;i++) rc4key[i] = 0x00; 63 

 64 
for (test_case = 1; test_case < (NUM_TEST_CASES+1); test_case++) 65 
{ 66 

printf ("\nTest vector #%d:\n",test_case); 67 
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key = keys + (16 * (test_case-1)); 1 
ta = transmitter_addr + (6 * (test_case-1)); 2 

 3 
mix_key(key, 4 

ta, 5 
test_case_pnl[test_case-1], 6 
test_case_pnh[test_case-1], 7 
rc4key, 8 
p1k 9 
); 10 

 11 
printf("TK    ="); 12 
for (i=0; i<16; i++) 13 
{ 14 

printf(" %02X", key[i]); 15 
} 16 
printf(" [LSB on left, MSB on right]\n"); 17 

 18 
printf("TA    ="); 19 
printf(" %02X", ta[0]); 20 
for (i=1; i<6; i++) 21 
{ 22 

printf("-%02X", ta[i]); 23 
} 24 
printf("\n"); 25 

 26 
printf("PN    = %08X%04X [transmitted as: ", 27 

test_case_pnh[test_case-1], 28 
test_case_pnl[test_case-1]); 29 

printf(" %02X %02X %02X DefKeyID", 30 
(test_case_pnl[test_case-1] % 256), 31 
(rc4key[1]), 32 
((test_case_pnl[test_case-1] >> 8) % 256) 33 
); 34 

printf(" %02X %02X %02X %02X]\n", 35 
(test_case_pnh[test_case-1] % 256), 36 
((test_case_pnh[test_case-1] >> 8) % 256), 37 
((test_case_pnh[test_case-1] >> 16) % 256), 38 
((test_case_pnh[test_case-1] >> 24) % 256) 39 
); 40 

 41 
printf("IV32  = %08X\n", test_case_pnh[test_case-1]); 42 
printf("IV16  = %04X\n", test_case_pnl[test_case-1]); 43 

 44 
 45 

printf("P1K   ="); 46 
for (i=0; i<5; i++) 47 
{ 48 

printf(" %04X", p1k[i]); 49 
} 50 
printf("\n"); 51 

 52 
printf("RC4KEY="); 53 
for (i=0; i<16; i++) 54 
{ 55 

printf(" %02X", rc4key[i]); 56 
} 57 
printf("\n"); 58 

 59 
} 60 

 61 
return 0; 62 

} 63 
 64 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  146

F.1.2 Test Vectors 1 

The following output is provided to test implementations of the temporal key hash algorithm. All input and 2 
output values are shown in hexadecimal. 3 
Test vector #1: 4 
TK    = 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F [LSB on left, MSB on right] 5 
TA    = 10-22-33-44-55-66 6 
PN    = 000000000000 [transmitted as:  00 20 00 DefKeyID 00 00 00 00] 7 
IV32  = 00000000   [transmitted as 00 00 00 00] 8 
IV16  = 0000 9 
P1K   = 3DD2  016E  76F4  8697  B2E8  10 
RC4KEY= 00 20 00 33 EA 8D 2F 60 CA 6D 13 74 23 4A 66 0B  11 
 12 
Test vector #2: 13 
TK    = 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F [LSB on left, MSB on right] 14 
TA    = 10-22-33-44-55-66 15 
PN    = 000000000001 [transmitted as:  01 20 00 DefKeyID 00 00 00 00] 16 
IV32  = 00000000   [transmitted as 00 00 00 00] 17 
IV16  = 0001 18 
P1K   = 3DD2  016E  76F4  8697  B2E8  19 
RC4KEY= 00 20 01 90 FF DC 31 43 89 A9 D9 D0 74 FD 20 AA  20 
 21 
Test vector #3: 22 
TK    = 63 89 3B 25 08 40 B8 AE 0B D0 FA 7E 61 D2 78 3E [LSB on left, MSB on right] 23 
TA    = 64-F2-EA-ED-DC-25 24 
PN    = 20DCFD43FFFF [transmitted as:  FF 7F FF DefKeyID 43 FD DC 20] 25 
IV32  = 20DCFD43   [transmitted as 20 DC FD 43] 26 
IV16  = FFFF 27 
P1K   = 7C67  49D7  9724  B5E9  B4F1  28 
RC4KEY= FF 7F FF 93 81 0F C6 E5 8F 5D D3 26 25 15 44 CE  29 
 30 
Test vector #4: 31 
TK    = 63 89 3B 25 08 40 B8 AE 0B D0 FA 7E 61 D2 78 3E [LSB on left, MSB on right] 32 
TA    = 64-F2-EA-ED-DC-25 33 
PN    = 20DCFD440000 [transmitted as:  00 20 00 DefKeyID 44 FD DC 20] 34 
IV32  = 20DCFD44   [transmitted as 20 DC FD 44] 35 
IV16  = 0000 36 
P1K   = 5A5D  73A8  A859  2EC1  DC8B  37 
RC4KEY= 00 20 00 49 8C A4 71 FC FB FA A1 6E 36 10 F0 05  38 
 39 
Test vector #5: 40 
TK    = 98 3A 16 EF 4F AC B3 51 AA 9E CC 27 1D 73 09 E2 [LSB on left, MSB on right] 41 
TA    = 50-9C-4B-17-27-D9 42 
PN    = F0A410FC058C [transmitted as:  8C 25 05 DefKeyID FC 10 A4 F0] 43 
IV32  = F0A410FC   [transmitted as F0 A4 10 FC] 44 
IV16  = 058C 45 
P1K   = F2DF  EBB1  88D3  5923  A07C  46 
RC4KEY= 05 25 8C F4 D8 51 52 F4 D9 AF 1A 64 F1 D0 70 21  47 
 48 
Test vector #6: 49 
TK    = 98 3A 16 EF 4F AC B3 51 AA 9E CC 27 1D 73 09 E2 [LSB on left, MSB on right] 50 
TA    = 50-9C-4B-17-27-D9 51 
PN    = F0A410FC058D [transmitted as:  8D 25 05 DefKeyID FC 10 A4 F0] 52 
IV32  = F0A410FC   [transmitted as F0 A4 10 FC] 53 
IV16  = 058D 54 
P1K   = F2DF  EBB1  88D3  5923  A07C  55 
RC4KEY= 05 25 8D 09 F8 15 43 B7 6A 59 6F C2 C6 73 8B 30  56 
 57 
Test vector #7: 58 
TK    = C8 AD C1 6A 8B 4D DA 3B 4D D5 B6 54 38 35 9B 05 [LSB on left, MSB on right] 59 
TA    = 94-5E-24-4E-4D-6E 60 
PN    = 8B1573B730F8 [transmitted as:  F8 30 30 DefKeyID B7 73 15 8B] 61 
IV32  = 8B1573B7   [transmitted as 8B 15 73 B7] 62 
IV16  = 30F8 63 
P1K   = EFF1  3F38  A364  60A9  76F3  64 
RC4KEY= 30 30 F8 65 0D A0 73 EA 61 4E A8 F4 74 EE 03 19  65 
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 1 
Test vector #8: 2 
TK    = C8 AD C1 6A 8B 4D DA 3B 4D D5 B6 54 38 35 9B 05 [LSB on left, MSB on right] 3 
TA    = 94-5E-24-4E-4D-6E 4 
PN    = 8B1573B730F9 [transmitted as:  F9 30 30 DefKeyID B7 73 15 8B] 5 
IV32  = 8B1573B7   [transmitted as 8B 15 73 B7] 6 
IV16  = 30F9 7 
P1K   = EFF1  3F38  A364  60A9  76F3  8 
RC4KEY= 30 30 F9 31 55 CE 29 34 37 CC 76 71 27 16 AB 8F  9 

 10 

F.2 Michael reference implementation and test vectors 11 

F.2.1 Michael test vectors 12 

To ensure correct implementation of Michael, here are some test vectors. These test vectors still have to be 13 
confirmed by an independent implementation. 14 

F.2.1.1 Block function 15 

Here are some test vectors for the block function. 16 

Input # times output 

(00000000, 00000000) 1 (00000000, 00000000) 
(00000000, 00000001) 1  (c00015a8, c0000b95) 
(00000001, 00000000) 1  (6b519593, 572b8b8a) 
(01234567, 83659326) 1  (441492c2, 1d8427ed)  
(00000001, 00000000) 1000  (9f04c4ad, 2ec6c2bf) 

The first four rows give test vectors for a single application of the block function b. The last row gives a test 17 
vector for 1000 repeated applications of the block function. Together these should provide adequate test 18 
coverage. 19 

F.2.1.2 Michael 20 

Here are some test vectors for Michael. 21 

Key message output 

0000000000000000 "" 82925c1ca1d130b8 
82925c1ca1d130b8 "M” 434721ca40639b3f 
434721ca40639b3f "Mi “ E8f9becae97e5d29 
e8f9becae97e5d29 "Mic" 90038fc6cf13c1db 
90038fc6cf13c1db "Mich" d55e100510128986 
d55e100510128986 "Michael" 0a942b124ecaa546 

Note that each key is the result of the previous line, which makes it easy to construct a single test out of all 22 
of these test cases. 23 

F.2.2 Example code 24 
 25 

// 26 
// Michael.h    Reference implementation for Michael 27 
//              written by Niels Ferguson 28 
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// 1 
// The author has put this code in the public domain. 2 
// 3 
 4 
// 5 
// A Michael object implements the computation of the Michael MIC. 6 
// 7 
// Conceptually, the object stores the message to be authenticated. 8 
// At construction the message is empty.  9 
// The append() method appends bytes to the message. 10 
// The getMic() method computes the MIC over the message and returns the 11 
result. 12 
// As a side-effect it also resets the stored message  13 
// to the empty message so that the object can be re-used  14 
// for another MIC computation. 15 
 16 
class Michael  17 

{ 18 
 19 
public: 20 

// Constructor requires a pointer to 8 bytes of key 21 
Michael( Byte * key ); 22 
 23 
// Destructor 24 
~Michael(); 25 
 26 
// Clear the internal message,  27 
// resets the object to the state just after construction. 28 
void clear(); 29 
 30 
// Set the key to a new value 31 
void setKey( Byte * key ); 32 
 33 
// Append bytes to the message to be MICed 34 
void append( Byte * src, int nBytes ); 35 
     36 
// Get the MIC result. Destination should accept 8 bytes of 37 
result. 38 
// This also resets the message to empty. 39 
void getMIC( Byte * dst ); 40 
 41 
// Run the test plan to verify proper operations 42 
static void runTestPlan(); 43 

 44 
private: 45 

// Copy constructor declared but not defined,  46 
//avoids compiler-generated version. 47 
Michael( const Michael & ); 48 
// Assignment operator declared but not defined,  49 
//avoids compiler-generated version. 50 
void operator=( const Michael & ); 51 
 52 
 53 
// A bunch of internal functions  54 
 55 
// Get UInt32 from 4 bytes LSByte first 56 
static UInt32 getUInt32( Byte * p ); 57 
 58 
// Put UInt32 into 4 bytes LSByte first 59 
static void putUInt32( Byte * p, UInt32 val ); 60 
 61 
// Add a single byte to the internal message 62 
void appendByte( Byte b ); 63 
 64 
 65 
// Conversion of hex string to binary string 66 
static void hexToBin( char *src, Byte * dst ); 67 
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 1 
// More conversion of hex string to binary string 2 
static void hexToBin( char *src, int nChars, Byte * dst ); 3 
 4 
// Helper function for hex conversion 5 
static Byte hexToBinNibble( char c ); 6 
 7 
// Run a single test case  8 
static void runSingleTest( char * cKey, char * cMsg, char * 9 
cResult ); 10 

 11 
 12 

UInt32  K0, K1;         // Key  13 
UInt32  L, R;           // Current state 14 
UInt32  M;              // Message accumulator (single word) 15 
int     nBytesInM;      // # bytes in M 16 
}; 17 

 18 
 19 
// 20 
// Michael.cpp  Reference implementation for Michael 21 
//              written by Niels Ferguson 22 
// 23 
// The author has put this code in the public domain.// All rights 24 
reserved, 25 
// 26 
 27 
// Adapt these typedefs to your local platform 28 
typedef unsigned long UInt32; 29 
typedef unsigned char Byte; 30 
 31 
#include <assert.h> 32 
#include <stdio.h> 33 
#include <stdlib.h>  34 
#include <string.h> 35 
 36 
#include "Michael.h" 37 
 38 
// Rotation functions on 32 bit values 39 
#define ROL32( A, n ) \ 40 

 ( ((A) << (n)) | ( ((A)>>(32-(n)))  & ( (1UL << (n)) - 1 ) ) ) 41 
#define ROR32( A, n ) ROL32( (A), 32-(n) ) 42 
 43 
 44 
UInt32 Michael::getUInt32( Byte * p ) 45 

// Convert from Byte[] to UInt32 in a portable way 46 
{ 47 
UInt32 res = 0; 48 
for( int i=0; i<4; i++ ) 49 

{ 50 
res |= (*p++) << (8*i); 51 
} 52 

return res; 53 
} 54 
 55 
 56 
void Michael::putUInt32( Byte * p, UInt32 val ) 57 

// Convert from UInt32 to Byte[] in a portable way 58 
{ 59 
for( int i=0; i<4; i++ ) 60 

{ 61 
*p++ = (Byte) (val & 0xff); 62 
val >>= 8; 63 
} 64 

} 65 
 66 
 67 
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void Michael::clear() 1 
{ 2 
// Reset the state to the empty message. 3 
L = K0; 4 
R = K1; 5 
nBytesInM = 0; 6 
M = 0; 7 
} 8 

 9 
 10 
void Michael::setKey( Byte * key ) 11 

{ 12 
// Set the key 13 
K0 = getUInt32( key ); 14 
K1 = getUInt32( key + 4 ); 15 
// and reset the message 16 
clear(); 17 
} 18 

 19 
 20 
Michael::Michael( Byte * key ) 21 

{ 22 
setKey( key ); 23 
} 24 

 25 
 26 
Michael::~Michael() 27 

{ 28 
// Wipe the key material 29 
K0 = 0; 30 
K1 = 0; 31 
 32 
// And the other fields as well.  33 
//Note that this sets (L,R) to (K0,K1) which is just fine. 34 
clear(); 35 
} 36 

 37 
 38 
void Michael::appendByte( Byte b ) 39 

{ 40 
// Append the byte to our word-sized buffer 41 
M |= b << (8*nBytesInM); 42 
nBytesInM++; 43 
// Process the word if it is full. 44 
if( nBytesInM >= 4 ) 45 

{ 46 
L ^= M; 47 
R ^= ROL32( L, 17 ); 48 
L += R; 49 
R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8); 50 
L += R; 51 
R ^= ROL32( L, 3 ); 52 
L += R; 53 
R ^= ROR32( L, 2 ); 54 
L += R; 55 
// Clear the buffer 56 
M = 0; 57 
nBytesInM = 0; 58 
} 59 

} 60 
 61 
 62 
void Michael::append( Byte * src, int nBytes ) 63 

{ 64 
// This is simple 65 
while( nBytes > 0 ) 66 

{ 67 
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appendByte( *src++ ); 1 
nBytes--; 2 
} 3 

} 4 
 5 
 6 
void Michael::getMIC( Byte * dst ) 7 

{ 8 
// Append the minimum padding 9 
appendByte( 0x5a ); 10 
appendByte( 0 ); 11 
appendByte( 0 ); 12 
appendByte( 0 ); 13 
appendByte( 0 ); 14 
// and then zeroes until the length is a multiple of 4 15 
while( nBytesInM != 0 ) 16 

{ 17 
appendByte( 0 ); 18 
} 19 

// The appendByte function has already computed the result. 20 
putUInt32( dst, L ); 21 
putUInt32( dst+4, R ); 22 
// Reset to the empty message. 23 
clear(); 24 
} 25 

 26 
 27 
void Michael::hexToBin( char *src, Byte * dst )  28 

{ 29 
// Simple wrapper 30 
hexToBin( src, strlen( src ), dst ); 31 
} 32 

 33 
 34 
void Michael::hexToBin( char *src, int nChars, Byte * dst ) 35 

{ 36 
assert( (nChars & 1) == 0 ); 37 
int nBytes = nChars/2; 38 
 39 
// Straightforward conversion 40 
for( int i=0; i<nBytes; i++ )  41 

{ 42 
dst[i] = (Byte)((hexToBinNibble( src[0] ) << 4)  43 

| hexToBinNibble( src[1] )); 44 
src += 2; 45 
} 46 

} 47 
 48 
 49 
Byte Michael::hexToBinNibble( char c )  50 

{ 51 
if( '0' <= c && c <= '9' )  52 

{ 53 
return (Byte)(c - '0'); 54 
} 55 

// Make it upper case 56 
c &= ~('a'-'A'); 57 
 58 
assert( 'A' <= c && c <= 'F' ); 59 
return (Byte)(c - 'A' + 10); 60 
} 61 

 62 
 63 
void Michael::runSingleTest( char * cKey, char * cMsg, char * cResult ) 64 

{ 65 
Byte key[ 8 ]; 66 
Byte result[ 8 ]; 67 
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Byte res[ 8 ]; 1 
 2 
// Convert key and result to binary form 3 
hexToBin( cKey, key ); 4 
hexToBin( cResult, result ); 5 
 6 
// Compute the MIC value 7 
Michael mic( key ); 8 
mic.append( (Byte *)cMsg, strlen( cMsg) ); 9 
mic.getMIC( res ); 10 
 11 
// Check that it matches 12 
assert( memcmp( res, result, 8 ) == 0 ); 13 
} 14 

 15 
 16 
void Michael::runTestPlan() 17 

// As usual, test plans can be quite tedious but this should 18 
// ensure that the implementation runs as expected. 19 
{ 20 
Byte key[8] ; 21 
Byte msg[12]; 22 
int i; 23 
 24 
// First we test the test vectors for the block function  25 
 26 
// The case (0,0) 27 
putUInt32( key, 0 ); 28 
putUInt32( key+4, 0 ); 29 
putUInt32( msg, 0 ); 30 
 31 
Michael mic( key ); 32 
mic.append( msg, 4 ); 33 
     34 
assert( mic.L == 0 && mic.R == 0 ); 35 
 36 
// The case (0,1) 37 
putUInt32( key, 0 ); 38 
putUInt32( key+4, 1 ); 39 
mic.setKey( key ); 40 
mic.append( msg, 4 ); 41 
 42 
assert( mic.L == 0xc00015a8 && mic.R == 0xc0000b95 ); 43 
 44 
// The case (1,0) 45 
putUInt32( key, 1 ); 46 
putUInt32( key+4, 0 ); 47 
mic.setKey( key ); 48 
mic.append( msg, 4 ); 49 

 50 
assert( mic.L == 0x6b519593 && mic.R == 0x572b8b8a ); 51 
 52 
// The case (01234567, 83659326) 53 
putUInt32( key, 0x01234567 ); 54 
putUInt32( key+4, 0x83659326 ); 55 
mic.setKey( key ); 56 
mic.append( msg, 4 ); 57 
 58 
assert( mic.L == 0x441492c2 && mic.R == 0x1d8427ed ); 59 
 60 
// The repeated case 61 
putUInt32( key, 1 ); 62 
putUInt32( key+4,0 ); 63 
mic.setKey( key ); 64 
 65 
for( i=0; i<1000; i++ ) 66 

{ 67 
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mic.append( msg, 4 ); 1 
} 2 

 3 
assert( mic.L == 0x9f04c4ad && mic.R == 0x2ec6c2bf ); 4 
 5 
// And now for the real test cases 6 
runSingleTest( "0000000000000000", ""         , "82925c1ca1d130b8" 7 
); 8 
runSingleTest( "82925c1ca1d130b8", "M"        , "434721ca40639b3f" 9 
); 10 
runSingleTest( "434721ca40639b3f", "Mi"       , "e8f9becae97e5d29" 11 
); 12 
runSingleTest( "e8f9becae97e5d29", "Mic"      , "90038fc6cf13c1db" 13 
); 14 
runSingleTest( "90038fc6cf13c1db", "Mich"     , "d55e100510128986" 15 
); 16 
runSingleTest( "d55e100510128986", "Michael"  , "0a942b124ecaa546" 17 
); 18 
} 19 

 20 

F.3 HMAC-MD5 reference implementation and test vectors 21 

F.3.1 Reference code 22 

 23 
#include "stdafx.h" 24 
#define ULONG unsigned long 25 
#include <md5.h> 26 
 27 
/* 28 
 * Function: hmac_md5 from rfc2104; uses an MD5 library 29 
 */ 30 
 31 
void hmac_md5( 32 

unsigned char *text, int text_len, 33 
unsigned char *key, int key_len, 34 
void * digest) 35 

{ 36 
MD5_CTX context; 37 
unsigned char k_ipad[65]; /* inner padding - key XORd with ipad */ 38 
unsigned char k_opad[65]; /* outer padding - key XORd with opad */ 39 
int i; 40 
 41 
/* if key is longer than 64 bytes reset it to key=MD5(key) */ 42 
if (key_len > 64) { 43 

MD5_CTX tctx; 44 
 45 
MD5Init(&tctx); 46 
MD5Update(&tctx, key, key_len); 47 
MD5Final(&tctx); 48 
 49 
key = tctx.digest; 50 
key_len = 16; 51 

} 52 
 53 
/* 54 
 * the HMAC_MD5 transform looks like: 55 
 * 56 
 *   MD5(K XOR opad, MD5(K XOR ipad, text)) 57 
 * 58 
 * where K is an n byte key 59 
 * ipad is the byte 0x36 repeated 64 times 60 
 * opad is the byte 0x5c repeated 64 times 61 
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 * and text is the data being protected 1 
 */ 2 
 3 
/* start out by storing key in pads */ 4 
memset(k_ipad, 0, sizeof k_ipad); 5 
memset(k_opad, 0, sizeof k_opad); 6 
memcpy(k_ipad, key, key_len); 7 
memcpy(k_opad, key, key_len); 8 
 9 
/* XOR key with ipad and opad values */ 10 
for (i = 0; i < 64; i++) { 11 

k_ipad[i] ^= 0x36; 12 
k_opad[i] ^= 0x5c; 13 

} 14 
 15 

/* perform inner MD5 */ 16 
MD5Init(&context); /* init context for 1st pass */ 17 
MD5Update(&context, k_ipad, 64);  /* start with inner pad*/ 18 
MD5Update(&context, text, text_len); /* then text of datagram */ 19 
MD5Final(&context); /* finish up 1st pass */ 20 
memcpy(digest, context.digest, 16); 21 
 22 
/* perform outer MD5 */ 23 
MD5Init(&context); /* init context for 2nd pass */ 24 
MD5Update(&context, (const unsigned char*)k_opad, 64);      25 

/* start with outer pad */ 26 
MD5Update(&context, (const unsigned char*)digest, 16);      27 

/* then results of 1st hash */ 28 
MD5Final(&context); /* finish up 2nd pass */ 29 
memcpy(digest, context.digest, 16); 30 

} 31 

F.3.2 Test vectors 32 

Test case 1 33 
Key  0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 34 
Key length 16 35 
Data "Hi There" 36 
data_length 8 37 
digest 0x9294727a3638bb1c13f48ef8158bfc9d 38 

Test case 2 39 
Key "Jefe" 40 
Key length 4 41 
Data "what do ya want for nothing?" 42 
Data length 28 43 
Digest 0x750c783e6ab0b503eaa86e310a5db738 44 

Test case 3 45 
Key 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 46 
Key length 16 47 
Data 0xdd repeated 50 times 48 
Data length 50 49 
Digest 0x56be34521d144c88dbb8c733f0e8b3f6 50 

Test case 4 51 
Key 0x0102030405060708090a0b0c0d0e0f10111213141516171819 52 
Key length 25 53 
Data 0xcd repeated 50 times 54 
Data length 50 55 
Digest 0x697eaf0aca3a3aea3a75164746ffaa79 56 
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Test case 5 1 
Key 0x0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c 2 
Key length 16 3 
Data "Test With Truncation" 4 
Data length 20 5 
Digest 0x56461ef2342edc00f9bab995690efd4c 6 
Digest-96 0x56461ef2342edc00f9bab995 7 

Test case 6 8 
Key 0xaa repeated 80 times 9 
Key length 80 10 
Data "Test Using Larger Than Block-Size Key - Hash Key First" 11 
Data length 54 12 
Digest 0x6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd 13 

Test case 7 14 
Key 0xaa repeated 80 times 15 
Key length 80 16 
Data "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data"  17 
Data length 73 18 
Digest 0x6f630fad67cda0ee1fb1f562db3aa53e 19 

F.4 HMAC-SHA1 reference implementation and test vectors 20 

F.4.1 HMAC-SHA1 Reference code 21 

 22 
#include "stdafx.h" 23 
#define ULONG unsigned long 24 
#include <sha.h> 25 
 26 
void hmac_sha1( 27 

unsigned char *text, int text_len, 28 
unsigned char *key, int key_len, 29 
unsigned char *digest) 30 

{ 31 
A_SHA_CTX context; 32 
unsigned char k_ipad[65]; /* inner padding - key XORd with ipad */ 33 
unsigned char k_opad[65]; /* outer padding - key XORd with opad */ 34 
int i; 35 

 36 
/* if key is longer than 64 bytes reset it to key=SHA1(key) */ 37 
if (key_len > 64) { 38 

A_SHA_CTX      tctx; 39 
 40 

A_SHAInit(&tctx); 41 
A_SHAUpdate(&tctx, key, key_len); 42 
A_SHAFinal(&tctx, key); 43 

 44 
key_len = 20; 45 

} 46 
 47 

/* 48 
 * the HMAC_SHA1 transform looks like: 49 
 * 50 
 * SHA1(K XOR opad, SHA1(K XOR ipad, text)) 51 
 * 52 
 * where K is an n byte key 53 
 * ipad is the byte 0x36 repeated 64 times 54 
 * opad is the byte 0x5c repeated 64 times 55 
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 * and text is the data being protected 1 
 */ 2 

 3 
/* start out by storing key in pads */ 4 
memset(k_ipad, 0, sizeof k_ipad); 5 
memset(k_opad, 0, sizeof k_opad); 6 
memcpy(k_ipad, key, key_len); 7 
memcpy(k_opad, key, key_len); 8 

 9 
/* XOR key with ipad and opad values */ 10 
for (i = 0; i < 64; i++) { 11 

k_ipad[i] ^= 0x36; 12 
k_opad[i] ^= 0x5c; 13 

} 14 
 15 

/* perform inner SHA1*/ 16 
A_SHAInit(&context); /* init context for 1st pass */ 17 
A_SHAUpdate(&context, k_ipad, 64); /* start with inner pad */ 18 
A_SHAUpdate(&context, text, text_len); /* then text of datagram */ 19 
A_SHAFinal(&context, digest); /* finish up 1st pass */ 20 

 21 
/* perform outer SHA1 */ 22 
A_SHAInit(&context); /* init context for 2nd pass */ 23 
A_SHAUpdate(&context, k_opad, 64); /* start with outer pad */ 24 
A_SHAUpdate(&context, digest, 20); /* then results of 1st hash */ 25 
A_SHAFinal(&context, digest); /* finish up 2nd pass */ 26 

} 27 

F.4.2 HMAC-SHA1 Test vectors 28 

Test case 1 29 
Key 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 30 
Key length 20 31 
Data "Hi There" 32 
Data length 8 33 
Digest 0xb617318655057264e28bc0b6fb378c8ef146be00 34 

Test case 2 35 
Key "Jefe" 36 
Key length 4 37 
Data "what do ya want for nothing?" 38 
Data length 28 39 
Digest 0xeffcdf6ae5eb2fa2d27416d5f184df9c259a7c79 40 

Test case 3 41 
Key 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 42 
Key length 20 43 
Data 0xdd repeated 50 times 44 
Data length 50 45 
Digest 0x125d7342b9ac11cd91a39af48aa17b4f63f175d3 46 

Test case 4 47 
Key 0x0102030405060708090a0b0c0d0e0f10111213141516171819 48 
Key length 25 49 
Data 0xcd repeated 50 times 50 
Data length 50 51 
Digest 0x4c9007f4026250c6bc8414f9bf50c86c2d7235dane 7 52 

Test case 5 53 
Key 0x0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c 54 
Key len 20 55 
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Data "Test With Truncation" 1 
Data len 20 2 
Digest 0x4c1a03424b55e07fe7f27be1d58bb9324a9a5a04 3 
Digest-96 0x4c1a03424b55e07fe7f27be1 4 

Test case 6 5 
Key 0xaa repeated 80 times 6 
Key length 80 7 
Data "Test Using Larger Than Block-Size Key - Hash Key First" 8 
Data length 54 9 
Digest 0xaa4ae5e15272d00e95705637ce8a3b55ed402112 10 

Test case 7 11 
Key 0xaa repeated 80 times 12 
Key length 80 13 
Data "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data"  14 
Data length 73 15 
  digest = 0xe8e99d0f45237d786d6bbaa7965c7808bbff1a91 16 
Data length 20 17 
Digest 0x4c1a03424b55e07fe7f27be1d58bb9324a9a5a04 18 
Digest-96 0x4c1a03424b55e07fe7f27be1 19 

Test case 6 20 
Key 0xaa repeated 80 times 21 
Key length 80 22 
Data "Test Using Larger Than Block-Size Key - Hash Key First" 23 
Data length 54 24 
Digest 0xaa4ae5e15272d00e95705637ce8a3b55ed402112 25 

Test case 7 26 
Key 0xaa repeated 80 times 27 
Key length 80 28 
Data "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data"  29 
Data length 73 30 
Digest 0xe8e99d0f45237d786d6bbaa7965c7808bbff1a91 31 

F.5 PRF reference implementation and test vectors 32 

F.5.1 PRF Reference code 33 

 34 
/* 35 
 * PRF -- Length of output is in octets rather than bits 36 
 *     since length is always a multiple of 8 output array is 37 
 *     organized so first N octets starting from 0 contains PRF output 38 
 * 39 
 *     supported inputs are 16, 32, 48, 64 40 
 *     output array must be 80 octets to allow for sha1 overflow 41 
 */ 42 
void PRF( 43 

unsigned char *key, int key_len, 44 
unsigned char *prefix, int prefix_len, 45 
unsigned char *data, int data_len,  46 
unsigned char *output, int len) 47 

{ 48 
int i; 49 
unsigned char input[1024]; /* concatenated input */ 50 
int currentindex = 0; 51 
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int total_len; 1 
 2 

memcpy(input, prefix, prefix_len); 3 
input[prefix_len] = 0; /* single octet 0 */ 4 
memcpy(&input[prefix_len+1], data, data_len); 5 
total_len = prefix_len + 1 + data_len; 6 
input[total_len] = 0; /* single octet count, starts at 0 */ 7 
total_len++; 8 
for(i = 0; i < (len+19)/20; i++) { 9 

hmac_sha1(input, total_len, key, key_len, 10 
&output[currentindex]); 11 

currentindex += 20; /* next concatenation location */ 12 
input[total_len-1]++; /* increment octet count */ 13 

} 14 
} 15 

F.5.2 PRF Test vectors 16 

Test case 1 17 
Key 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 18 
Key length 20 19 
Prefix “prefix” 20 
Prefix length 6 21 
Data "Hi There" 22 
Data length 8 23 
PRF-512   24 

0xbcd4c650b30b9684951829e0d75f9d54b862175ed9f00606e17d8da35402ffee75df78c325 
d31e0f889f012120c0862beb67753e7439ae242edb8373698356cf5a 26 

Test case 2 27 
Key "Jefe" 28 
Key length 4 29 
Prefix “prefix” 30 
Prefix length 6 31 
Data "what do ya want for nothing?" 32 
Data length 28 33 
PRF-512 34 

0x51f4de5b33f249adf81aeb713a3c20f4fe631446fabdfa58244759ae58ef9009a99abf4eac35 
2ca5fa87e692c440eb40023e7babb206d61de7b92f41529092b8fc 36 

Test case 3 37 
Key 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 38 
Key length 20 39 
Prefix “prefix” 40 
Prefix length 6 41 
Data 0xdd repeated 50 times 42 
Data length 50 43 
PRF-512  44 

0xe1ac546ec4cb636f9976487be5c86be17a0252ca5d8d8df12cfb0473525249ce9dd8d17745 
ead710bc9b590547239107aef7b4abd43d87f0a68f1cbd9e2b6f7607 46 

F.6. OCB Mode 47 

The contents of this clause have been reproduced by permission of Phil Rogaway. 48 
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F.6.1 OCB Definition 1 

F.6.1.1 Notation 2 

NOTATION. If a and b are integers, a ≤ b, then [a..b] is the set {a, a+1, …,b}. If i ≥ 1 is an integer then 3 
ntz(i) is the number of trailing 0-bits in the binary representation of i (equivalently, ntz(i) is the largest 4 
integer z such that 2z divides i. So, for example, ntz(7)=0 and ntz(8)=3. 5 

A string is a finite sequence of symbols, each symbol being 0 or 1. The string of length 0 is called the empty 6 
string and is denoted ε. Let {0, 1}* denote the set of all strings. If A, B ∈ {0, 1}* then A B, or A || B, is their 7 
concatenation. If A ∈ {0, 1}* and A ≠ ε then firstbit(A) is the first bit of A and lastbit(A) is the last bit of A. 8 
Let i, n be nonnegative integers. Then 0i and 1i denote the strings of i 0’s and 1’s, respectively. Let {0, 1}n 9 
denote the set of all strings of length n. If A ∈ {0, 1}* then |A| denotes the length of A, in bits, while ||A||n = 10 
max{1, |A|/n} denotes the length of A in n-bit blocks, where the empty string counts as one block. For A ∈ 11 
{0, 1}* and |A| ≤ n, paddn(A) is the string A 0n−|A|.  With n understood we will write pad{A} for paddn(A). 12 
If A ∈ {0, 1}* and τ ∈ [0..|A|] then A[first τ bits] and A[last τ bits] denote the first τ bits of A and the last τ 13 
bits of A, respectively.  Both of these values are the empty string if τ =0. If A, B ∈ {0, 1}* then A ⊕ B is the 14 
bit-wise xor of A[first l bits] and B[first l bits], where l = min{|A|, |B|} (where ε ⊕ A = A ⊕ ε = ε). So, for 15 
example, 1001 ⊕ 11 = 01. If A = an−1 … a1 a0 ∈ {0, 1}n then str2num(A) is the number 2n−1⋅an−1 + … + 16 
21⋅a1 + 20⋅a0. If a ∈ [0..2n−1] then num2strn(a) is the n-bit string A such that str2num(A) = a. Let lenn(A) = 17 
num2strn(|A|). We omit the subscript when n is understood.   18 

If A = an−1 an−2 … a1 a0 ∈ {0, 1}n then A << 1 is the n-bit string an−2 … a1 a0 0 which is a left shift of A by 19 
one bit (the first bit of A disappearing and a zero coming into the last bit), while A >> 1 is the n-bit string 0 20 
an−1 an−2 … a1 a0 which is a right shift of A by one bit (the last bit disappearing and a zero coming into the 21 
first bit). 22 

In pseudo code we write “Partition M into M[1] … M[m]”' as shorthand for “Let m = len(M) and let M[1], 23 
…, M[m] be strings such that M[1] … M[m] = M and |M[i]| = n  for 1 ≤ i < m.” We write “Partition C into 24 
C[1] … C[m] T” as shorthand for “if | C | < τ then return INVALID. Otherwise, let C = C[first |C| − τ bits], T 25 
= C[last |C| − τ bits], let m = ||C||n, and let C[1], …, C[m] be strings such that C[1] … C[m] = C and |C[i]| = n  26 
for 1 ≤ i < m.” Recall that ||M||n = max{1, |M|/n}, so the empty string partitions into m = 1 block, that one 27 
block being the empty string. 28 

THE FIELD WITH 2n POINTS. Let GF(2n) denote the field with 2n points. We interchangeably think of a 29 
point a in GF(2n) in any of the following ways: (1) as an abstract point in a field; (2) as an n-bit string an−1 30 
… a1 a0 ∈ {0, 1}n;  (3) as a formal polynomial  a(x) = an−1x

n−1 + … + a1x + a0 with binary coefficients; (4) 31 
as an integer between 0 and 2n−1, where the string a ∈ {0, 1}n corresponds to the number str2num(a). For 32 
example, one can regard the string a = 0125 101 as a 128-bit string, as the number 5, as the polynomial x2+1, 33 
or as an abstract point in GF(2128). We write a(x) instead of a if we wish to emphasize that we are thinking 34 
of a as a polynomial. 35 

To add two points in GF(2n), take their bit-wise xor. We denote this operation by a ⊕ b. To multiply two 36 
points in the field, first fix an irreducible polynomial pn(x) having binary coefficients and degree n: say the 37 
lexicographically first polynomial among the irreducible degree n polynomials having a minimum number 38 
of nonzero coefficients. For n =128, the indicated polynomial is p128 (x) = x128 + x7 + x2 + x + 1. A few other 39 
pn(x)-values are x64 + x4 + x3 + x + 1 and x96  + x10+ x9 + x6 + 1 and x160 + x5 + x3 + x2 +  1 and x192 + x7 + x2 40 
+ x + 1 and  x224 + x9 + x8 + x3 + 1 and x256 + x10 + x5 + x2 + 1. To multiply a, b ∈ GF(2n), which we denote 41 
a ⋅ b, regard a and b as polynomials a(x)= an−1x

n−1 + … + a1x + a0 and b(x)= bn−1x
n−1 + … + b1x + b0, form 42 

their product c(x) over GF(2), and take the remainder one gets when dividing c(x) by pn(x). 43 

It is computationally simple to multiply a ∈ {0, 1}n by x. We illustrate the method for n = 128, in which 44 
case multiplying a = an−1x

n−1 + … + a1x + a0 by x yields an−1x
n + … + a1x

2 + a0x. Thus, if the first bit of a is 45 
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0, then a ⋅ x = a << 1. If the first bit of a is 1 then we must add x128 to a << 1. Since p128 (x) = x128 + x7 + x2 1 
+ x + 1 = 0 we know that x128 = x7 + x2 + x + 1, so adding x128 means to xor by 012010000111. In summary, 2 
when n = 128, 3 

 a << 1 if firstbit(a) = 0 4 
                            a ⋅ x =  5 

 (a << 1) ⊕  012010000111 if firstbit(a) = 1 6 

It is similarly easy to divide a ∈ {0, 1}128 by x (i.e., to multiply a by the multiplicative inverse of x). If the 7 
last bit of a is 0, then a ⋅ x−1 is a >> 1. If the last bit of a is 1 then we must add (xor) to a >> 1 the value x−1.  8 
Since x128 = x7 + x2 + x + 1 we have that x−1 = x127 + x6 + x + 1 = 10120 1000011. In summary, when n = 128, 9 

 a << 1 if lastbit(a) = 0 10 
                            a ⋅ x−1  =  11 

 (a << 1) ⊕  101201000011 if lastbit(a) = 1 12 

If L ∈ {0, 1}n and i ≥ −1, we write L(i) as shorthand for L ⋅ xi. Using the equations just given, we have an 13 
easy way to compute from L the values L(−1), L(0), L(1), …, L(µ), where µ is small number. 14 

GRAY CODES. For l ≥ 1, a Gray code is an ordering γl = (γl
0, γ

l
1, …, γl

k) of {0, 1}l, where k = 2l−1, such 15 
that successive points differ (in the Hamming sense) by just one bit. For n a fixed number, OCB makes use 16 
of the “canonical” Gray code γ = γn constructed by γ1 =(0 1) and, for l > 0, 17 

γl+1 = (0γl
0  0γl1 … 0γl

k  1γl
0  1γl

1 … 1γl
k),  k = 2l−2 18 

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n−1, γi = γi−1 ⊕ (0n−11 << ntz(i)). This 19 
makes it easy to compute successive points. 20 

We emphasize the following characteristics of the Gray-code values γ0, γ1, …, γk, where k = 2n−1: that they 21 
are distinct and different from 0; that γ1=1; and that γi < 2i.  22 

Let L ∈ {0, 1}n and  consider the problem of successively forming the strings γ1 ⋅ L, γ2 ⋅ L, γ3 ⋅ L, …, γm ⋅ L. 23 
Of course γ1 ⋅ L = 1 ⋅ L = L. Now, for i ≥ 2, assume one has already produced γi−1 ⋅ L. Since γi = γi−1 ⊕  24 
(0n−11 << ntz(i)) we know that 25 

γi ⋅ L = (γi−1 ⊕  (0n−11 << ntz(i))) ⋅ L  26 
= (γi−1 ⋅ L) ⊕ (0n−11 << ntz(i)) ⋅ L  27 
= (γi−1 ⋅ L) ⊕ (L ⋅ xntz(i))  28 
= (γi−1 ⋅ L) ⊕ L(ntz(i))  29 

That is, the ith word in the sequence γ1 ⋅ L, γ2 ⋅ L, γ3 ⋅ L, … is obtained by xoring the previous word with 30 
L(ntz(i)). Had the sequence we were considering been  γ1 ⋅ L ⊕ R, γ2 ⋅ L ⊕ R, γ3 ⋅ L ⊕ R, … , the ith word 31 
would be formed in the same way for i ≥ 2, but the first word in the sequence would have been L ⊕ R 32 
instead of L. 33 

F.6.1.2 The Scheme 34 

PARAMETERS. To use OCB one must specify a block cipher and a tag length. The block cipher is a 35 
function  E: K × {0, 1}n → {0, 1}n, for some number n, where each E(K,⋅) = EK(⋅) is a permutation on {0, 36 
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1}n. Here K is the set of possible keys and n is the block length. Both are arbitrary, though we insist that n ≥ 1 
64, and we discourage n < 128. The tag length is an integer τ ∈ [0..n]. By trivial means, the adversary will 2 
be able to forge a valid ciphertext with probability 2−τ. The popular block cipher to use with OCB is likely 3 
to be AES [34]. As for the tag length, a suggested default of τ = 64 is reasonable. Tags of 32 bits are 4 
standard in retail banking. Tags of 96 bits are used in IPsec. Using a tag of more than 80 bits adds 5 
questionable security benefit, though it does lengthen each ciphertext. 6 

We let OCB-E denote the OCB mode of operation using block cipher E and an unspecified tag length. We 7 
let OCB[E, τ] denote the OCB mode of operation using block cipher E and tag length τ. 8 

NONCES. Encryption under OCB mode requires an n-bit nonce, N. The nonce would typically be a counter 9 
(maintained by the sender) or a random value (selected by the sender). Security is maintained even if the 10 
adversary can control the nonce, subject to the constraint that no nonce may be repeated within the current 11 
session (that is, during the period of use of the current  encryption key). The nonce need not be random, 12 
unpredictable, or secret. 13 

The nonce N is needed both to encrypt and to decrypt. Typically it would be communicated, in the clear, 14 
along with the  ciphertext. However, it is out-of-scope how the nonce is communicated to the party who will 15 
decrypt. In particular, we do not regard the nonce as part of the ciphertext. 16 

DEFINITION OF THE MODE. See Figure 54 for a definition and illustration of OCB. The figure defines 17 
OCB encryption and decryption. The key space for OCB is the key space K for the underlying block cipher 18 
E. 19 

AN EQUIVALENT DESCRIPTION. The following description may clarify what a typical implementation 20 
might do. 21 

Key generation. Choose a random key K ←R K for the block cipher. The key K is provided to both the 22 
entity that encrypts and the entity that decrypts. 23 

Key setup. For the party that encrypts, do any key setup associated to block-cipher enciphering. For the 24 
party that decrypts, do any key setup associated to block-cipher enciphering and deciphering. Let L ← 25 
EK(0n). Let m bound the maximum number of n-bit blocks that any message which will be encrypted or 26 
decrypted may have. Let µ ← log2 m. Let L(0) ← L and, for i ∈ [1.. µ], compute L(i) ← L(i−1) ⋅ x using a 27 
shift and a conditional xor, as described in Section G.2. Compute L(−1) ← L ⋅ x−1 using a shift and a 28 
conditional xor, as described in Section G.2. Save the values L(−1), L(0), L(1), …, L(µ) in a table. 29 

 30 

 31 

 32 
 33 

 34 
 35 

 36 

 37 
 38 

N 

⊕ L 

EK 

R 

M[1] 

⊕ Z[1] 

EK 

⊕ Z[1] 

M[2] 

⊕ Z[2] 

EK 

⊕ Z[2] 

…

…

M[m−1] 

⊕ Z[m−1] 

EK 

⊕ Z[m−1] 

M[m] 

⊕ Z[m] 

EK 

⊕ 

⊕ L⋅x−1 

len 

first τ bits 

Checksu

⊕ Z[m] 

EK 

τ 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  162

 1 

 2 

 3 
 4 

Algorithm OCB.EncK (N, M) 
Partition M into M[1] … M[m] 

L ← EK(0n) 
R ← EK(N ⊕ L) 
for i ← 1 to m do Z[i] ← γi ⋅ L ⊕ R 
for i ← 1 to m−1 do 

C[i] ← EK(M[i] ⊕ Z[i]) ⊕ Z[i] 
X[m] ← len(M[m]) ⊕ L⋅x−1 ⊕ Z[m] 
Y[m] ← EK(X[m]) 
C[m] ← Y[m] ⊕ M[m] 
C ← C[1] … C[m] 
Checksum ← M[1] ⊕ … ⊕ M[m−1] ⊕ C[m]0* ⊕ 
Y[m] 
T ← EK(Checksum ⊕ Z[m])[first τ bits] 
return C ← C || T 

 

Algorithm OCB.DecK (N, M) 
Partition C into C[1] … C[m] T 

L ← EK(0n) 
R ← EK(N ⊕ L) 
for i ← 1 to m do Z[i] ← γi ⋅ L ⊕ R 
for i ← 1 to m−1 do 

M[i] ← EK
−1(C[i] ⊕ Z[i]) ⊕ Z[i] 

X[m] ← len(C[m]) ⊕ L⋅x−1 ⊕ Z[m] 
Y[m] ← EK(X[m]) 
M[m] ← Y[m] ⊕ C[m] 
M ← M[1] … M[m] 
Checksum ← M[1] ⊕ … ⊕ M[m−1] ⊕ C[m]0* ⊕ 
Y[m] 
T′ ← EK(Checksum ⊕ Z[m])[first τ bits] 
if T′ = T then return M 

else return INVALID 

 

 5 

Figure 54—OCB Encryption. The message to encrypt is M and the key is K. Message M is written as M = 6 
M[1] M[2] … M[m−1] M[m], where m = max{1, |M|/n} and |M[1]| = |M[2]| = … = |M[m−1]| = n. Nonce N 7 

is a non-repeating value selected by the party that encrypts. It is sent along with ciphertext C = C[1] C[2] 8 
C[3] … C[m−1] C[m] T. The Checksum is M[1] ⊕ … ⊕ M[m−1] ⊕ C[m]0* ⊕ Y[m]. Offset Z[1] = L ⊕ R 9 
while, for i ≥ 2, Z[i] = Z[i−1] ⊕ L(ntz[i]). String L is defined by applying EK to a fixed string, 0n. For Y[m] 10 
⊕ M[m] and Y[m] ⊕ C[m], truncate Y[m] if it is longer than the other operand. By C[m]0* we mean C[m] 11 
padded on the right with 0-bits to get to length n. The function len represents the length of its argument as 12 

an n-bit string. 13 

Encryption. To encrypt plaintext M ∈ {0, 1}* using key K and nonce N ∈ {0, 1}n, obtaining a ciphertext C, 14 
do the following. Let m ← |M|/n. If m = 0 then let m ← 1. Let M[1], …, M[m] be strings such that M[1] … 15 
M[m] = M and |M[i]| = n for i ∈ [1..m−1]. Let Offset ← EK(N ⊕ L). Let Checksum ← 0n. For i ← 1 to m−1, 16 
do the following: let Checksum ← Checksum ⊕ M[i]; let Offset ← Offset ⊕ L(ntz(i)); let C[i] ← EK(M[i] 17 
⊕ Offset) ⊕ Offset. Let Offset ← Offset ⊕ L(ntz(m)). Let Y[m] ← EK(len(M[m]) ⊕ L(−1) ⊕ Offset. Let 18 
C[m] ← M[m] xored with the first |M[m]| bits of Y[m]. Let Checksum ← Checksum ⊕ Y[m] ⊕ C[m]0*. Let 19 
T be the first τ bits of EK(Checksum ⊕ Offset). The ciphertext is C = C[1] … C[m−1] C[m] T. It must be 20 
communicated along with the nonce N. 21 

Decryption. To decrypt ciphertext C ∈ {0, 1}* using key K and nonce N ∈ {0, 1}n, obtaining a plaintext M 22 
∈ {0, 1}* or an indication INVALID, do the following. If |C| < τ then return INVALID (the ciphertext has 23 
been rejected). Otherwise let C be the first |C |−τ bits of C and let T be the remaining τ bits. Let m ← |C|/n.  24 
If m = 0 then let m = 1. Let C[1], …, C[m] be strings such that C[1] … C[m] = C and |C[i]| = n for i ∈ 25 
[1..m−1]. Let Offset ← EK(N ⊕ L). Let Checksum ← 0n. For i ← 1 to m−1, do the following: let Offset ← 26 
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Offset ⊕ L(ntz(i)); let M[i] ← EK
−1(C[i] ⊕ Offset) ⊕ Offset; let Checksum ← Checksum ⊕ M[i]. Let Offset 1 

← Offset ⊕ L(ntz(m)). Let Y[m] ← EK(len(C[m]) ⊕ L(−1) ⊕ Offset). Let M[m] ← C[m] xored with the first 2 
|C[m]| bits of Y[m]. Let Checksum ← Checksum ⊕ Y[m] ⊕ C[m]0*. Let T′ be the first τ bits of 3 
EK(Checksum ⊕ Offset). If T ≠ T′ then return INVALID (the ciphertext has been rejected). Otherwise, the 4 
plaintext is M= M[1] … M[m−1] M[m]. 5 

F.6.2. OCB reference implementation 6 
 7 
/* 8 
 * ocb.h 9 
 * 10 
 * Author:  Ted Krovetz (tdk@acm.org) 11 
 * History: 1 April 2000 - first release (TK) - version 0.9 12 
 * 13 
 * OCB-AES-n reference code based on NIST submission "OCB Mode" 14 
 * (dated 1 April 2000), submitted by Phillip Rogaway, with 15 
 * auxiliary submitters Mihir Bellare, John Black, and Ted Krovetz. 16 
 * 17 
 * This code is freely available, and may be modified as desired. 18 
 * Please retain the authorship and change history. 19 
 * Note that OCB mode itself is patent pending. 20 
 * 21 
 * This code is NOT optimized for speed; it is only 22 
 * designed to clarify the algorithm and to provide a point 23 
 * of comparison for other implementations. 24 
 * 25 
 * Limitiations:  Assumes a 4-byte integer and pointers are 26 
 * 32-bit aligned. Acts on a byte string of less than 2^{36} - 16 bytes. 27 
 * 28 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 29 
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 30 
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE 32 
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 34 
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 36 
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 37 
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 38 
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 
 */ 40 
 41 
#ifndef __OCB__H 42 
#define __OCB__H 43 
 44 
#ifndef AES_KEY_BITLEN 45 
#define AES_KEY_BITLEN   128  /* Must be 128, 192, 256 */ 46 
#endif 47 
 48 
#if ((AES_KEY_BITLEN != 128) && \ 49 

(AES_KEY_BITLEN != 192) && \ 50 
(AES_KEY_BITLEN != 256)) 51 

#error Bad -- AES_KEY_BITLEN must be one of 128, 192 or 256!! 52 
#endif 53 
 54 
/* Opaque forward declaration of key structure */  55 
typedef struct _keystruct keystruct; 56 
 57 
/* 58 
 * "ocb_aes_init" optionally creates an ocb keystructure in memory 59 
 * and then initializes it using the supplied "enc_key". "tag_len" 60 
 * specifies the length of tags that will subsequently be generated 61 
 * and verified. If "key" is NULL a new structure will be created, but 62 
 * if "key" is non-NULL, then it is assumed that it points to a  63 
 * previously allocated structure, and that structure is initialized.  64 
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 * "ocb_aes_init" returns a pointer to the initialized structure, or NULL  1 
 * if an error occurred. 2 
 */ 3 
keystruct *                    /* Init'd keystruct or NULL      */ 4 
ocb_aes_init(void *enc_key,    /* AES key                       */ 5 

unsigned tag_len,       /* Length of tags to be used     */ 6 
keystruct *key);        /* OCB key structure. NULL means */ 7 

                               /* Allocate/init new, non-NULL   */ 8 
                               /* means init existing structure */ 9 
 10 
/* "ocb_done deallocates a key structure and returns NULL */ 11 
keystruct * 12 
ocb_done(keystruct *key); 13 
                               14 
/* 15 
 * "ocb_aes_encrypt takes a key structure, four buffers and a length 16 
 * parameter as input. "pt_len" bytes that are pointed to by "pt" are 17 
 * encrypted and written to the buffer pointed to by "ct". A tag of  18 
 * length "tag_len" (set in ocb_aes_init) is written to the "tag" buffer.  19 
 * "nonce" must be a 16-byte buffer which changes for each new message  20 
 * being encrypted. "ocb_aes_encrypt" always returns a value of 1. 21 
 */ 22 
void 23 
ocb_aes_encrypt(keystruct *key,    /* Initialized key struct           */ 24 

void      *nonce,  /* 16-byte nonce                    */ 25 
void      *pt,     /* Buffer for (incoming) plaintext  */ 26 
unsigned   pt_len, /* Byte length of pt                */ 27 
void      *ct,     /* Buffer for (outgoing) ciphertext */ 28 
void      *tag);   /* Buffer for generated tag         */ 29 

 30 
                               31 
/* 32 
 * "ocb_aes_decrypt takes a key structure, four buffers and a length 33 
 * parameter as input. "ct_len" bytes that are pointed to by "ct" are 34 
 * decrypted and written to the buffer pointed to by "pt". A tag of  35 
 * length "tag_len" (set in ocb_aes_init) is read from the "tag" buffer.  36 
 * "nonce" must be a 16-byte buffer which changes for each new message  37 
 * being encrypted. "ocb_aes_decrypt" returns 0 if the supplied 38 
 * tag is not correct for the supplied message, otherwise 1 is returned  39 
 * if the tag is correct. 40 
 */ 41 
int                                /* Returns 0 iff tag is incorrect   */ 42 
ocb_aes_decrypt(keystruct *key,    /* Initialized key struct           */ 43 

void      *nonce,  /* 16-byte nonce                    */ 44 
void      *ct,     /* Buffer for (incoming) ciphertext */ 45 
unsigned   ct_len, /* Byte length of ct                */ 46 
void      *pt,     /* Buffer for (outgoing) plaintext  */ 47 
void      *tag);   /* Tag to be verified               */ 48 

                  49 
void 50 
pmac_aes (keystruct *key,    /* Initialized key struct           */ 51 

void      *in,     /* Buffer for (incoming) message    */ 52 
unsigned   in_len, /* Byte length of message           */ 53 
void      *tag);    /* 16-byte buffer for generated tag */ 54 

 55 
#endif /* __OCB__H */ 56 

 57 
/** 58 
 * rijndael-alg-fst.h 59 
 * 60 
 * @version 3.0 (December 2000) 61 
 * 62 
 * Optimized ANSI C code for the Rijndael cipher (now AES) 63 
 * 64 
 * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> 65 
 * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> 66 
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 * @author Paulo Barreto <paulo.barreto@terra.com.br> 1 
 * 2 
 * This code is hereby placed in the public domain. 3 
 * 4 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS 5 
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 6 
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 7 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE 8 
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 9 
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 10 
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 11 
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 12 
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 13 
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 14 
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 15 
 */ 16 
#ifndef __RIJNDAEL_ALG_FST_H 17 
#define __RIJNDAEL_ALG_FST_H 18 
 19 
#define MAXKC (256/32) 20 
#define MAXKB (256/8) 21 
#define MAXNR 14 22 
 23 
typedef unsigned char u8;  24 
typedef unsigned short u16;  25 
typedef unsigned int u32; 26 
 27 
int rijndaelKeySetupEnc( 28 

u32 rk[/*4*(Nr + 1)*/], const u8 cipherKey[], int keyBits); 29 
int rijndaelKeySetupDec( 30 

u32 rk[/*4*(Nr + 1)*/], const u8 cipherKey[], int keyBits); 31 
void rijndaelEncrypt( 32 

const u32 rk[/*4*(Nr + 1)*/], int Nr, const u8 pt[16], u8 ct[16]); 33 
void rijndaelDecrypt( 34 

const u32 rk[/*4*(Nr + 1)*/], int Nr, const u8 ct[16], u8 pt[16]); 35 
 36 
#ifdef INTERMEDIATE_VALUE_KAT 37 
void rijndaelEncryptRound( 38 

const u32 rk[/*4*(Nr + 1)*/], int Nr, u8 block[16], int rounds); 39 
void rijndaelDecryptRound( 40 

const u32 rk[/*4*(Nr + 1)*/], int Nr, u8 block[16], int rounds); 41 
#endif /* INTERMEDIATE_VALUE_KAT */ 42 
 43 
#endif /* __RIJNDAEL_ALG_FST_H */ 44 

 45 
/* 46 
 * ocb.c 47 
 * 48 
 * Author:  Ted Krovetz (tdk@acm.org) 49 
 * History: 1 April 2000 - first release (TK) - version 0.9 50 
 * 51 
 * OCB-AES-n reference code based on NIST submission "OCB Mode" 52 
 * (dated 1 April 2000), submitted by Phillip Rogaway, with 53 
 * auxiliary submitters Mihir Bellare, John Black, and Ted Krovetz. 54 
 * 55 
 * This code is freely available, and may be modified as desired. 56 
 * Please retain the authorship and change history. 57 
 * Note that OCB mode itself is patent pending. 58 
 * 59 
 * This code is NOT optimized for speed; it is only 60 
 * designed to clarify the algorithm and to provide a point 61 
 * of comparison for other implementations. 62 
 * 63 
 * Limitiations:  Assumes a 4-byte integer type and pointers that are 64 
 * 32-bit aligned. Acts on a byte string of at most 2^36-16 bytes. 65 
 * 66 
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 * Rijndael source available at www.esat.kuleuven.ac.be/~rijmen/rijndael/ 1 
 * 2 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 3 
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 4 
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 5 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE 6 
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 7 
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 8 
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 9 
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 10 
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 11 
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 12 
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 13 
 */ 14 
 15 
#include "ocb.h" 16 
#include "rijndael-alg-fst.h" 17 
#include <stdlib.h> 18 
#include <string.h> 19 
#include <limits.h> 20 
 21 
#if (INT_MAX != 0x7fffffff) 22 
#error -- Assumes 4-byte int 23 
#endif 24 
 25 
/*  26 
 * This implementation precomputes L(-1), L(0), L(1), L(PRE_COMP_BLOCKS), 27 
 * where L(0) = L and L(-1) = L/x and L(i) = x*L(i) for i>0.   28 
 * Normally, one would select PRE_COMP_BLOCKS to be a small number 29 
 * (like 0-6) and compute any larger L(i) values "on the fly", when they 30 
 * are needed.  This saves space in _keystruct and needn't adversely 31 
 * impact running time.  But in this implementation, to keep things as  32 
 * simple as possible, we compute all the L(i)-values we might ever see. 33 
 */  34 
#define PRE_COMP_BLOCKS 31     /* Must be between 0 and 31 */ 35 
 36 
#define AES_ROUNDS (AES_KEY_BITLEN / 32 + 6) 37 
 38 
typedef unsigned char block[16]; 39 
 40 
struct _keystruct { 41 
    unsigned rek[4*(AES_ROUNDS+1)]; /* AES encryption key */ 42 
    unsigned rdk[4*(AES_ROUNDS+1)]; /* AES decryption key */ 43 
    unsigned tag_len;             /* Sizeof tags to generate/validate */ 44 
    block L[PRE_COMP_BLOCKS+1];   /* Precomputed L(i) values, L[0] = L */ 45 
    block L_inv;                  /* Precomputed L/x value  */ 46 
}; 47 
 48 
/************************************************************************  49 
 * xor_block   50 
 ***********************************************************************/ 51 
static void xor_block(void *dst, void *src1, void *src2) 52 
/* 53 
 * 128-bit xor: *dst = *src1 xor *src2. Pointers must be 32-bit aligned  54 
 */ 55 
{ 56 

((unsigned *)dst)[0] = ((unsigned *)src1)[0] ^ ((unsigned 57 
*)src2)[0]; 58 

((unsigned *)dst)[1] = ((unsigned *)src1)[1] ^ ((unsigned 59 
*)src2)[1]; 60 

((unsigned *)dst)[2] = ((unsigned *)src1)[2] ^ ((unsigned 61 
*)src2)[2]; 62 

((unsigned *)dst)[3] = ((unsigned *)src1)[3] ^ ((unsigned 63 
*)src2)[3]; 64 

} 65 
 66 
 67 
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/************************************************************************  1 
 * shift_left   2 
 ***********************************************************************/ 3 
static void shift_left(unsigned char *x) 4 
/* 5 
 * 128-bit shift-left by 1 bit: *x <<= 1.                        6 
 */ 7 
{ 8 

int i; 9 
for (i = 0; i < 15; i++) { 10 

x[i] = (x[i] << 1) | (x[i+1] & 0x80 ? 1 : 0); 11 
} 12 
x[15] = (x[15] << 1); 13 

} 14 
 15 
/***********************************************************************  16 
 * shift_right  17 
 ***********************************************************************/ 18 
static void shift_right(unsigned char *x) 19 
/* 20 
 * 128-bit shift-right by 1 bit:  *x >>= 1 21 
 */ 22 
{ 23 

int i; 24 
for (i = 15; i > 0; i--) { 25 

x[i] = (x[i] >> 1) | (x[i-1] & 1 ? 0x80u : 0); 26 
} 27 
x[0] = (x[0] >> 1); 28 

} 29 
 30 
/************************************************************************  31 
 * ntz  32 
 ***********************************************************************/ 33 
static int ntz(unsigned i) 34 
/* 35 
 * Count the number of trailing zeroes in integer i. 36 
 */ 37 
{ 38 
#if (MSC_VER && _M_IX86)  /* Only non-C sop */ 39 

asm bsf eax, i 40 
#elif (__GNUC__ && __i386__) 41 

int rval; 42 
asm volatile("bsf %1, %0" : "=r" (rval) : "g" (i)); 43 
return rval;     44 

#else 45 
int rval = 0; 46 
while ((i & 1) == 0) { 47 

i >>= 1; 48 
rval++; 49 

} 50 
return rval; 51 

#endif 52 
} 53 
 54 
/************************************************************************  55 
 * ocb_aes_init  56 
 ***********************************************************************/ 57 
keystruct *                         /* Init'd keystruct or NULL      */ 58 
ocb_aes_init(void      *enc_key,    /* AES key                       */ 59 
             unsigned   tag_len,    /* Length of tags to be used     */ 60 
             keystruct *key)        /* OCB key structure. NULL means */ 61 
                                    /* Allocate/init new, non-NULL   */ 62 
                                    /* means init existing structure */ 63 
{ 64 

unsigned char tmp[16] = {0,}; 65 
unsigned first_bit, last_bit, i; 66 

 67 
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if (key == NULL) 1 
key = (keystruct *)malloc(sizeof(keystruct)); 2 

if (key != NULL) { 3 
memset(key, 0, sizeof(keystruct)); 4 

 5 
/* Initialize AES keys. (Note that if one is only going to  6 
encrypt, key->rdk can be eliminated */ 7 
rijndaelKeySetupEnc(key->rek, (unsigned char *)enc_key, 8 

AES_KEY_BITLEN); 9 
rijndaelKeySetupDec(key->rdk, (unsigned char *)enc_key, 10 

AES_KEY_BITLEN); 11 
 12 

/* Precompute L[i]-values. L[0] is synonym of L */ 13 
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp); 14 
for (i = 0; i <= PRE_COMP_BLOCKS; i++) { 15 

memcpy(key->L + i, tmp, 16);   /* Copy tmp to L[i] */ 16 
first_bit = tmp[0] & 0x80u;  /* multiply tmp by x */ 17 
shift_left(tmp); 18 
if (first_bit)  19 

tmp[15] ^= 0x87; 20 
} 21 

 22 
/* Precompute L_inv = L . x^{-1} */ 23 
memcpy(tmp, key->L, 16); 24 
last_bit = tmp[15] & 0x01; 25 
shift_right(tmp); 26 
if (last_bit) { 27 

tmp[0] ^= 0x80; 28 
tmp[15] ^= 0x43; 29 

} 30 
memcpy(key->L_inv, tmp, 16); 31 

 32 
/* Set tag length used for this session */ 33 
key->tag_len = tag_len; 34 

} 35 
     36 

return key; 37 
} 38 
 39 
/************************************************************************  40 
 * ocb_aes_encrypt  41 
 ***********************************************************************/ 42 
void                        43 
ocb_aes_encrypt(keystruct *key,    /* Initialized key struct           */ 44 
                void      *nonce,  /* 16-byte nonce                    */ 45 
                void      *pt,     /* Buffer for (incoming) plaintext  */ 46 
                unsigned   pt_len, /* Byte length of pt                */ 47 
                void      *ct,     /* Buffer for (outgoing) ciphertext */ 48 
                void      *tag)    /* Buffer for generated tag         */ 49 
{ 50 

unsigned i;                  /* Block counter                   */ 51 
block tmp, tmp2;             /* temporary buffers               */ 52 
block *pt_blk, *ct_blk;      /* block-typed aliases for pt / ct */ 53 
block Offset;                /* Offset (Z[i]) for current block */ 54 
block checksum;              /* Checksum for computing tag      */ 55 

 56 
/*  57 
 * Initializations 58 
 */ 59 
i = 1;                      /* Start with first block         */ 60 
pt_blk = (block *)pt - 1;   /* These are adjusted so, e.g.,   */ 61 
ct_blk = (block *)ct - 1;   /* pt_blk[1] refers to 1st block  */ 62 
memset(checksum, 0, 16);    /* Zero the checksum              */ 63 
 64 
/* Calculate R, aka Z[0] */ 65 
xor_block(Offset, nonce, key->L);  66 
rijndaelEncrypt (key->rek, AES_ROUNDS, Offset, Offset); 67 
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         1 
/* 2 
 * Process blocks 1 .. m-1 3 
 */ 4 
while (pt_len > 16) { 5 

/* Update the Offset (Z[i] from Z[i-1]) */ 6 
xor_block(Offset, key->L + ntz(i), Offset); 7 
 8 
/* xor the plaintext block with Z[i] */ 9 
xor_block(tmp, Offset, pt_blk + i); 10 
         11 
/* Encipher the block */ 12 
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp); 13 
             14 
/* xor Z[i] again, writing result to ciphertext pointer */ 15 
xor_block(ct_blk + i, Offset, tmp); 16 
         17 
/* Update checksum */ 18 
xor_block(checksum, checksum, pt_blk + i); 19 
 20 
/* Update loop variables */ 21 
pt_len -= 16; 22 
i++; 23 

} 24 
     25 

/* 26 
 * Process block m 27 
 */ 28 

 29 
/* Update Offset (Z[m] from Z[m-1]) */ 30 
xor_block(Offset, key->L + ntz(i), Offset); 31 

     32 
/* xor L . x^{-1} and Z[m] */ 33 
xor_block(tmp, Offset, key->L_inv); 34 

 35 
/* Add in final block bit-length */ 36 
tmp[15] ^= (pt_len << 3); 37 

 38 
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp); 39 

 40 
/* xor 'pt' with block-cipher output, copy valid bytes to 'ct' */ 41 
memcpy(tmp2, pt_blk + i, pt_len); 42 
xor_block(tmp2, tmp2, tmp); 43 
memcpy(ct_blk + i, tmp2, pt_len); 44 

 45 
/* Add to checksum the pt_len bytes of plaintext followed by */  46 
/* the last (16 - pt_len) bytes of block-cipher output */ 47 
memcpy(tmp, pt_blk + i, pt_len); 48 
xor_block(checksum, checksum, tmp); 49 

 50 
/*  51 
 * Calculate tag 52 
 */ 53 
xor_block(checksum, checksum, Offset); 54 
rijndaelEncrypt(key->rek, AES_ROUNDS, checksum, tmp); 55 
memcpy(tag, tmp, key->tag_len); 56 

} 57 
 58 
/************************************************************************  59 
 * ocb_aes_decrypt  60 
************************************************************************/ 61 
int                                /* Returns 0 iff tag is incorrect   */ 62 
ocb_aes_decrypt(keystruct *key,    /* Initialized key struct           */ 63 
                void      *nonce,  /* 16-byte nonce                    */ 64 
                void      *ct,     /* Buffer for (incoming) ciphertext */ 65 
                unsigned   ct_len, /* Byte length of ct                */ 66 
                void      *pt,     /* Buffer for (outgoing) plaintext  */ 67 
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                void      *tag)    /* Tag to be verified               */ 1 
{ 2 

unsigned i;                  /* Block counter                   */ 3 
block tmp, tmp2;             /* temporary buffers               */ 4 
block  *ct_blk, *pt_blk;     /* block-typed aliases for ct / pt */ 5 
block Offset;                /* Offset (Z[i]) for current block */ 6 
block checksum;              /* Checksum for computing tag      */ 7 

 8 
/*  9 
 * Initializations 10 
 */ 11 
i = 1;                      /* Start with first block           */ 12 
ct_blk = (block *)ct - 1;   /* These are adjusted so, e.g.,     */ 13 
pt_blk = (block *)pt - 1;   /* ct_blk[1] refers to 1st block    */ 14 

 15 
/* Zero checksum */ 16 
memset(checksum, 0, 16); 17 

 18 
/* Calculate R, aka Z[0] */ 19 
xor_block(Offset, nonce, key->L); 20 
rijndaelEncrypt (key->rek, AES_ROUNDS, Offset, Offset); 21 

     22 
/* 23 
 * Process blocks 1 .. m-1 24 
 */ 25 
while (ct_len > 16) { 26 

/* Update Offset (Z[i] from Z[i-1]) */ 27 
xor_block(Offset, key->L + ntz(i), Offset); 28 

 29 
/* xor ciphertext block with Z[i] */ 30 
xor_block(tmp, Offset, ct_blk + i); 31 

         32 
/* Decipher the next block-cipher block */ 33 
rijndaelDecrypt (key->rdk, AES_ROUNDS, tmp, tmp); 34 

             35 
/* xor Z[i] again, writing result to plaintext pointer */ 36 
xor_block(pt_blk + i, Offset, tmp); 37 

         38 
/* Update checksum */ 39 
xor_block(checksum, checksum, pt_blk + i); 40 

 41 
/* Update loop variables */ 42 
ct_len -= 16; 43 
i++; 44 

} 45 
     46 

/* 47 
 * Process block m 48 
 */ 49 

 50 
/* Update Offset (Z[m] from Z[m-1]) */ 51 
xor_block(Offset, key->L + ntz(i), Offset); 52 

 53 
/* xor L . x^{-1} and Z[m] */ 54 
xor_block(tmp, Offset, key->L_inv); 55 

 56 
/* Add in final block bit-length */ 57 
tmp[15] ^= (ct_len << 3); 58 

 59 
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp); 60 

 61 
/* Form the final ciphertext block, C[m]  */ 62 
memset(tmp2, 0, 16); 63 
memcpy(tmp2, ct_blk + i, ct_len); 64 
xor_block(tmp, tmp2, tmp); 65 
memcpy(pt_blk + i, tmp, ct_len); 66 

 67 
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/* After xor above, tmp will have ct_len bytes of plaintext  */ 1 
/* then (16 - ct_len) block-cipher bytes, perfect for chksum.  */ 2 
xor_block(checksum, checksum, tmp); 3 

 4 
/*  5 
 * Calculate tag 6 
 */ 7 
xor_block(checksum, checksum, Offset); 8 
rijndaelEncrypt(key->rek, AES_ROUNDS, checksum, tmp);  9 
return (memcmp(tag, tmp, key->tag_len) == 0 ? 1 : 0); 10 

} 11 
 12 
/************************************************************************  13 
 * ocb_done  14 
 ***********************************************************************/ 15 
keystruct *ocb_done(keystruct *key) 16 
{ 17 

if (key) { 18 
memset(key, 0, sizeof(keystruct)); 19 
free(key); 20 

} 21 
return NULL; 22 

} 23 

F.6.3 OCB test vectors 24 
 25 

Test case  OCB-AES-128-0B 26 
Key 000102030405060708090a0b0c0d0e0f 27 
Nonce 00000000000000000000000000000001 28 
Plaintext <empty string> 29 
Ciphertext <empty string> 30 
Tag 15d37dd7c890d5d6acab927bc0dc60ee 31 

Test case  OCB-AES-128-3B 32 
Key 000102030405060708090a0b0c0d0e0f 33 
Nonce 00000000000000000000000000000001 34 
Plaintext 000102 35 
Ciphertext fcd37d 36 
Tag 02254739a5e3565ae2dcd62c659746ba 37 

Test case  OCB-AES-128-16B 38 
Key 000102030405060708090a0b0c0d0e0f 39 
Nonce 00000000000000000000000000000001 40 
Plaintext 000102030405060708090a0b0c0d0e0f 41 
Ciphertext 37df8ce15b489bf31d0fc44da1faf6d6 42 
Tag dfb763ebdb5f0e719c7b4161808004df 43 

Test case  OCB-AES-128-20B 44 
Key 000102030405060708090a0b0c0d0e0f 45 
Nonce 00000000000000000000000000000001 46 
Plaintext 000102030405060708090a0b0c0d0e0f10111213 47 
Ciphertext 01a075f0d815b1a4e9c881a1bcffc3eb7003eb55 48 
Tag 753084144eb63b770b063c2e23cda0bb 49 

Test case  OCB-AES-128-32B 50 
Key 000102030405060708090a0b0c0d0e0f 51 
Nonce 00000000000000000000000000000001 52 
Plaintext 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f 53 
Ciphertext 01a075f0d815b1a4e9c881a1bcffc3eb4afcbb7fedc08ca8654c6d304d1612fa 54 
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Tag c14cbf2c1a1f1c3c137eadea1f2f2fcf 1 

Test case  OCB-AES-128-34B 2 
Key 000102030405060708090a0b0c0d0e0f 3 
Nonce 00000000000000000000000000000001 4 
Plaintext 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f2021 5 
Ciphertext 01a075f0d815b1a4e9c881a1bcffc3ebd4903dd0025ba4aa837c74f121b0260fa95d 6 
Tag cf8341bb10820ccf14bdec56b8d7d6ab 7 

Test case  OCB-AES-128-1000B 8 
Key 000102030405060708090a0b0c0d0e0f 9 
Nonce 00000000000000000000000000000001 10 
Plaintext 00000000000000000000 ... 00000000000000000000 [1000 bytes] 11 
Ciphertext 4c9b676705ff2df05503 ... 2f8d1496a60048e2b971 [1000 bytes] 12 
Tag ab335f725475e33e90ab8c1e4891596d 13 

 14 

F.7. CCM 15 

F.7.1. CCM reference implementation 16 

 17 
/*================================================================ 18 
 * Proposed AES CTR/CBC-MAC mode test vector generation 19 
 * 20 
 * 11-02-001r2-I-AES-Encryption & Authentication 21 
 * Using-CTR-Mode-with-CBC-MAC 22 
 * 23 
 * Author:  Doug Whiting, Hifn  (dwhiting@hifn.com) 24 
 * 25 
 * This code is released to the public domain, on an as-is basis. 26 
 *  27 
 *================================================================ 28 
 */ 29 
#include <stdio.h> 30 
#include <stdlib.h> 31 
#include <string.h> 32 
#include <time.h> 33 
#include <assert.h> 34 
 35 
#include "aes_defs.h"       /* AES calling interface*/ 36 
#include "aes_vect.h"       /* NIST AES test vectors*/ 37 
 38 
typedef int BOOL;           /* boolean */ 39 
 40 
enum { 41 

BLK_SIZE   = 16,    /* # octets in an AES block */ 42 
MAX_PACKET = 3*512, /* largest packet size */ 43 
N_RESERVED = 0,     /* reserved nonce octet value */ 44 
A_DATA     = 0x40,  /* the Adata bit in the flags */ 45 
M_SHIFT    = 3,     /* how much to shift the 3-bit M field */ 46 
L_SHIFT    = 0,     /* how much to shift the 3-bit L field */ 47 
L_SIZE     = 2     /* size of the l(m) length field (in octets) */ 48 

}; 49 
 50 
union block {             /* AES cipher block */ 51 

u32b x[BLK_SIZE/4]; /* access as 8-bit octets or 32-bit words */ 52 
u08b b[BLK_SIZE]; 53 

}; 54 
 55 
struct packet { 56 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

-
-
`
,
`
,
,
,
,
`
`
,
,
`
`
,
`
,
`
`
`
`
,
,
,
,
,
`
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  173

BOOL  encrypted; /* TRUE if encrypted */ 1 
u08b  TA[6];     /* xmit address */ 2 
int   micLength; /* # octets of MIC appended to plaintext (M) */ 3 
int   clrCount;  /* # cleartext octets covered by MIC */ 4 
u32b  pktNum[2]; /* unique packet sequence number (like WEP IV) */ 5 
block key;       /* the encryption key (K) */ 6 
int   length;    /* # octets in data[] */ 7 
u08b  data[MAX_PACKET+2*BLK_SIZE]; /* packet contents */ 8 

}; 9 
 10 
struct { 11 

int   cnt;            /* how many words left in ct */ 12 
block ptCntr;         /* the counter input */ 13 
block ct;             /* the ciphertext (prng output) */ 14 

} prng; 15 
 16 
/* return the 32-bit value read to be stored as a big-endian word */ 17 
u32b BigEndian(u32b x) 18 
{ 19 

static block b = {0,0,0,0}; 20 
 21 

if (b.x[0] == 0)      /* first time, figure out endianness */ 22 
b.x[0] = 0xFF000001; 23 

 24 
if (b.b[0] == 0xFF)   /* is this a big-endian CPU? */ 25 

return x;      /* if so, just return x */ 26 
 27 

if (b.b[0] != 0x01) /* not big-Endian; check it's little-Endian */ 28 
assert(0);     /* if not, bomb! */ 29 

 30 
/* little-endian: do the byte swapping */ 31 
return (x >> 24) + (x << 24) + 32 

((x >>  8) & 0x00FF00) + ((x <<  8) & 0xFF0000); 33 
} 34 
 35 
void InitRand(u32b seed) 36 
{ 37 

memset(prng.ptCntr.b,0,BLK_SIZE); 38 
prng.ptCntr.x[(BLK_SIZE/4)-1] = seed*17; 39 
prng.cnt = 0;  /* the pump is dry */ 40 

} 41 
 42 
/* prng: does not use C rand(), so should be usable across platforms */ 43 
u32b Random32(void) 44 
{ 45 

if (prng.cnt == 0) { /* use whatever key is currently defined */ 46 
prng.cnt = BLK_SIZE/4; 47 
prng.ptCntr.x[0]++; 48 
if (prng.ptCntr.x[0] == 0) /* ripple carry? */ 49 

prng.ptCntr.x[1]++;  /* stop at 64 bits */ 50 
AES_Encrypt(prng.ptCntr.x, prng.ct.x); 51 

} 52 
--prng.cnt; 53 
return BigEndian(prng.ct.x[prng.cnt]); 54 

} 55 
 56 
/* display a block */ 57 
void ShowBlock( 58 

const block *blk, 59 
const char *prefix, 60 
const char *suffix, 61 
int a) 62 

{ 63 
int i, blkSize = BLK_SIZE; 64 
printf(prefix,a); 65 
if (suffix == NULL) { 66 

suffix = "\n"; 67 
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blkSize = a; 1 
} 2 
for (i = 0; i < blkSize; i++) 3 

printf("%02X%s", blk->b[i], ((i&3)==3) ? "  ":" "); 4 
printf (suffix); 5 

} 6 
 7 
void ShowAddr(const packet *p) 8 
{ 9 

int i; 10 
 11 

printf("      TA = "); 12 
for (i = 0; i < 6 ; i++) 13 

printf("%02X%s",p->TA[i],(i==3)?"  ":" "); 14 
printf("  48-bit pktNum = %04X.%08X\n",p->pktNum[1],p->pktNum[0]); 15 

} 16 
 17 
/* display a packet */ 18 
void ShowPacket(const packet *p, const char *pComment, int a) 19 
{ 20 

int i; 21 
 22 

printf("Total packet length = %4d. ", p->length); 23 
printf(pComment, a); 24 
if (p->encrypted) 25 

printf("[Encrypted]"); 26 
for (i = 0; i < p->length; i++) { 27 

if ((i & 15) == 0) 28 
printf("\n%11s",""); 29 

printf("%02X%s", p->data[i], ((i&3)==3) ? "  ":" "); 30 
} 31 
printf("\n"); 32 

} 33 
 34 
/* make sure that encrypt/decrypt work according to NIST vectors */ 35 
void Validate_NIST_AES_Vectors(int verbose) 36 
{ 37 

int i; 38 
block key,pt,ct,rt; 39 

 40 
printf("AES KAT Vectors:\n");   /* known-answer tests */ 41 
/* variable text (fixed-key) tests */ 42 
memcpy(key.b,VT_key,BLK_SIZE); 43 
AES_SetKey(key.x,BLK_SIZE*8); 44 
for (i = 0; i < sizeof(VT_pt_ct_pairs); i += 2 * BLK_SIZE) { 45 

memcpy(pt.b, VT_pt_ct_pairs+i, BLK_SIZE); 46 
AES_Encrypt(pt.x, ct.x); 47 
if (memcmp(ct.x, VT_pt_ct_pairs+i+BLK_SIZE, BLK_SIZE)) { 48 

printf("Vector miscompare at VT test #%d", i); 49 
exit(1); 50 

} 51 
AES_Decrypt(ct.x, rt.x); /* sanity check on decrypt */ 52 
if (memcmp(pt.b, rt.b, BLK_SIZE)) { 53 

printf("Decrypt miscompare at VT test #%d", i); 54 
exit(1); 55 

} 56 
if (verbose) { /* only do a little if we're "debugging" */ 57 

printf("\n"); 58 
break; 59 

} else if (i==0) {  /* display the first vector */ 60 
ShowBlock(&key,"Key:       ","\n",0); 61 
ShowBlock(&pt ,"PT:        ","\n",0); 62 
ShowBlock(&ct ,"CT:        ","\n\n",0); 63 

} 64 
} 65 

 66 
/* variable key (fixed-text) tests */ 67 
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memcpy(pt.b, VK_pt, BLK_SIZE); 1 
for (i = 0; i < sizeof(VK_key_ct_pairs); i += 2*BLK_SIZE) { 2 

memcpy(key.b, VK_key_ct_pairs+i, BLK_SIZE); 3 
AES_SetKey(key.x, BLK_SIZE*8); 4 
AES_Encrypt(pt.x, ct.x); 5 
if (memcmp(ct.x, VK_key_ct_pairs+i+BLK_SIZE, BLK_SIZE)) { 6 

printf("Vector miscompare at VK test #%d", i); 7 
exit(1); 8 

} 9 
AES_Decrypt(ct.x, rt.x); /* sanity check on decrypt */ 10 
if (memcmp(pt.b, rt.b, BLK_SIZE)) { 11 

printf("Decrypt miscompare at VK test #%d",i); 12 
exit(1); 13 

} 14 
if (verbose) {  /* only do a little if we're "debugging" */ 15 

printf("\n"); 16 
break; 17 

} else if (i==0) {  /*  display the first vector */ 18 
ShowBlock(&key, "Key:       ", "\n", 0); 19 
ShowBlock(&pt , "PT:        ", "\n", 0); 20 
ShowBlock(&ct , "CT:        ", "\n\n", 0); 21 

} 22 
} 23 
printf("NIST AES Vectors: OK\n"); /* ok if we got here */ 24 

} 25 
 26 
/* assumes AES_SetKey is called elsewhere */ 27 
void Generate_CTR_CBC_Vector(packet *p, int verbose) 28 
{ 29 

int i, j, len, needPad, blkNum; 30 
block   m, x, T; 31 
assert(p->length >= p->clrCount && p->length <= MAX_PACKET); 32 
assert(p->micLength > 0 && p->micLength <= BLK_SIZE); 33 
len = p->length - p->clrCount;  /* l(m) */ 34 

 35 
ShowPacket(p,"[Input (%d cleartext header octets)]", p->clrCount); 36 

     37 
/* ---- generate the first AES block for CBC-MAC */ 38 
m.b[ 0] = (u08b) (((p->clrCount)?A_DATA:0) +  39 

(((p->micLength-2)/2 << M_SHIFT)) + 40 
((L_SIZE-1) << L_SHIFT));  /* flags octet */ 41 

m.b[ 1] = N_RESERVED;  /* reserved nonce octet  */ 42 
m.b[ 2] = (u08b) (p->pktNum[1] >> 8) & 0xFF; /* 48 bit pkt # */ 43 
m.b[ 3] = (u08b)  p->pktNum[1]       & 0xFF; 44 
m.b[ 4] = (u08b) (p->pktNum[0] >>24) & 0xFF; 45 
m.b[ 5] = (u08b) (p->pktNum[0] >>16) & 0xFF; 46 
m.b[ 6] = (u08b) (p->pktNum[0] >> 8) & 0xFF; 47 
m.b[ 7] = (u08b)  p->pktNum[0]       & 0xFF; 48 
m.b[ 8] = p->TA[0];  /* 48 bit Transmit Addr */ 49 
m.b[ 9] = p->TA[1]; 50 
m.b[10] = p->TA[2]; 51 
m.b[11] = p->TA[3]; 52 
m.b[12] = p->TA[4]; 53 
m.b[13] = p->TA[5]; 54 
m.b[14] = (len >> 8) & 0xFF;  /* l(m) field */ 55 
m.b[15] = len        & 0xFF; 56 

 57 
/*---- compute the CBC-MAC tag (MIC) */ 58 
AES_Encrypt(m.x, x.x);  /* produce the CBC IV */ 59 
ShowBlock(&m,"CBC IV in: ", "\n", 0); 60 
if (verbose) 61 

ShowBlock(&x, "CBC IV out:", "\n", 0); 62 
j = 0;    /* j = octet counter inside the block */ 63 
if (p->clrCount) {  /* is there a header? */ 64 

/* if so, "insert" length field: l(a) */ 65 
assert(p->clrCount < 0xFFF0); 66 

/* [don't handle larger cases (yet)] */ 67 
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x.b[j++] ^= (p->clrCount >> 8) & 0xFF; 1 
x.b[j++] ^=  p->clrCount       & 0xFF; 2 

} 3 
for (i = blkNum = 0; i < p->length; i++) { /* CBC-MAC */ 4 

x.b[j++] ^= p->data[i]; /* perform the CBC xor */ 5 
needPad = (i == p->clrCount-1) || (i == p->length-1); 6 
if ((j == BLK_SIZE) || needPad) { 7 

/* full block, or hit pad boundary */ 8 
if (verbose) 9 

ShowBlock(&x, "After xor: ", 10 
(i >= p->clrCount) ? " [msg]\n" : " 11 
[hdr]\n",blkNum); 12 

AES_Encrypt(x.x, x.x);  /* encrypt in place */ 13 
if (verbose) 14 

ShowBlock(&x, "After AES: ", "\n", blkNum); 15 
blkNum++;  /* count the blocks */ 16 
j = 0;  /* the block is now empty */ 17 

} 18 
} 19 
memcpy(T.b,x.b,p->micLength);       // save the MIC tag  20 
ShowBlock(&T,"MIC tag  : ",NULL,p->micLength); 21 

 22 
/* ---- encrypt the data packet using CTR mode */ 23 
m.b[0] &= ~(A_DATA | (7<<M_SHIFT)); 24 

/* clear flag fields for counter mode */ 25 
for (i=blkNum=0;i+p->clrCount < p->length;i++) { 26 

if ((i % BLK_SIZE) == 0) { 27 
/* generate new keystream block */ 28 
blkNum++;  /* start data with block #1 */ 29 
m.b[14] = blkNum/256; 30 
m.b[15] = blkNum%256; 31 
AES_Encrypt(m.x, x.x); /* encrypt the counter */ 32 
if (verbose && i==0) 33 

ShowBlock(&m,"CTR Start: ","\n",0); 34 
if (verbose) 35 

ShowBlock(&x,"CTR[%04X]: " ,"\n",blkNum); 36 
} 37 
/* merge in the keystream */ 38 
p->data[i+p->clrCount] ^= x.b[i % BLK_SIZE]; 39 

} 40 
 41 

/* ---- truncate, encrypt, and append MIC to packet */ 42 
m.b[14] = m.b[15] = 0; /* use block counter value zero for tag */ 43 
AES_Encrypt(m.x, x.x); /* encrypt the counter */ 44 
if (verbose) 45 

ShowBlock(&x,"CTR[MIC ]: " ,NULL,p->micLength); 46 
for (i = 0; i < p->micLength; i++)   47 

p->data[p->length+i] = T.b[i] ^ x.b[i]; 48 
p->length += p->micLength; /* adjust pkt length accordingly */ 49 

 50 
p->encrypted = 1; 51 
ShowPacket(p,"",0); /* show the final encrypted packet */ 52 

} 53 
 54 
int main(int argc,char *argv[]) 55 
{ 56 

int i, j, k, len, pktNum, seed; 57 
packet p; 58 

 59 
seed = (argc > 1) ? atoi(argv[1]) : (int) time(NULL); 60 
InitRand(seed); 61 
printf("%s C compiler [%s %s].\nRandom seed = %d\n", 62 

COMPILER_ID,__DATE__,__TIME__,seed); 63 
 64 

/* 1st, make sure that our AES code matches NIST KAT vectors */ 65 
Validate_NIST_AES_Vectors(_VERBOSE_); 66 

 67 
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/* generate CTR-CBC vectors for various parameter settings */ 1 
for (k = pktNum = 0; k < 2; k++) { 2 

/* k==1 => random vectors. 3 
   k==0 => "visually simple" vectors */ 4 
for (i = 0; i < BLK_SIZE  ; i++)           5 

p.key.b[i] = 6 
k) ? (u08b) Random32() & 0xFF : i + 0xC0; 7 

for (i = 0; i < 6; i++)           8 
p.TA[i] = (k) ? (u08b) Random32() & 0xFF : i + 0xA0; 9 
AES_SetKey(p.key.x, BLK_SIZE*8); 10 

/* run key schedule */ 11 
 12 

/* now generate the vectors */ 13 
for (p.micLength  = 8;p.micLength  <12;p.micLength+=2) 14 
for (p.clrCount   = 8;p.clrCount   <16;p.clrCount+=4) 15 
for (len          =32;len          <64;len*=2) 16 
for (i            =-1;i            < 2;i++) { 17 

p.pktNum[0] = (k) ? Random32() : 18 
pktNum*0x01010101 + 0x03020100; 19 

p.pktNum[1] = (k) ? Random32() & 0xFFFF : 0; 20 
/* 48-bit IV */ 21 

p.length    = len+i;  /* len+i is packet length */ 22 
p.encrypted = 0; 23 
assert(p.length <= MAX_PACKET); 24 
for (j = 0; j < p.length; j++) /* random pkt */ 25 

p.data[j]= (k) ? (u08b) Random32() & 0xFF : j; 26 
pktNum++; 27 
printf("=========== Packet Vector #%d 28 
==============\n",pktNum); 29 
ShowBlock(&p.key ,"AES Key:   ","\n",0); 30 
ShowAddr (&p); 31 
Generate_CTR_CBC_Vector(&p,1); 32 

} 33 
} 34 
return 0; 35 

} 36 

F.7.2. CCM test vectors 37 

The test vectors included in this annex cover the generic CCM mode, not the conventions for 802.11i. 38 

 39 
=============== Packet Vector #1 ================== 40 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   41 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.03020100 42 
Total packet length =   31. [Input (8 cleartext header octets)] 43 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   44 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E  45 
CBC IV in: 59 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 17   46 
CBC IV out:EB 9D 55 47  73 09 55 AB  23 1E 0A 2D  FE 4B 90 D6   47 
After xor: EB 95 55 46  71 0A 51 AE  25 19 0A 2D  FE 4B 90 D6   [hdr] 48 
After AES: CD B6 41 1E  3C DC 9B 4F  5D 92 58 B6  9E E7 F0 91   49 
After xor: C5 BF 4B 15  30 D1 95 40  4D 83 4A A5  8A F2 E6 86   [msg] 50 
After AES: 9C 38 40 5E  A0 3C 1B C9  04 B5 8B 40  C7 6C A2 EB   51 
After xor: 84 21 5A 45  BC 21 05 C9  04 B5 8B 40  C7 6C A2 EB   [msg] 52 
After AES: 2D C6 97 E4  11 CA 83 A8  60 C2 C4 06  CC AA 54 2F   53 
MIC tag  : 2D C6 97 E4  11 CA 83 A8   54 
CTR Start: 01 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 01   55 
CTR[0001]: 50 85 9D 91  6D CB 6D DD  E0 77 C2 D1  D4 EC 9F 97   56 
CTR[0002]: 75 46 71 7A  C6 DE 9A FF  64 0C 9C 06  DE 6D 0D 8F   57 
CTR[MIC ]: 3A 2E 46 C8  EC 33 A5 48   58 
Total packet length =   39. [Encrypted] 59 
           00 01 02 03  04 05 06 07  58 8C 97 9A  61 C6 63 D2   60 
           F0 66 D0 C2  C0 F9 89 80  6D 5F 6B 61  DA C3 84 17   61 
           E8 D1 2C FD  F9 26 E0  62 
 63 
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=============== Packet Vector #2 ================== 1 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   2 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.04030201 3 
Total packet length =   32. [Input (8 cleartext header octets)] 4 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   5 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   6 
CBC IV in: 59 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 18   7 
CBC IV out:F0 C2 54 D3  CA 03 E2 39  70 BD 24 A8  4C 39 9E 77   8 
After xor: F0 CA 54 D2  C8 00 E6 3C  76 BA 24 A8  4C 39 9E 77   [hdr] 9 
After AES: 48 DE 8B 86  28 EA 4A 40  00 AA 42 C2  95 BF 4A 8C   10 
After xor: 40 D7 81 8D  24 E7 44 4F  10 BB 50 D1  81 AA 5C 9B   [msg] 11 
After AES: 0F 89 FF BC  A6 2B C2 4F  13 21 5F 16  87 96 AA 33   12 
After xor: 17 90 E5 A7  BA 36 DC 50  13 21 5F 16  87 96 AA 33   [msg] 13 
After AES: F7 B9 05 6A  86 92 6C F3  FB 16 3D C4  99 EF AA 11   14 
MIC tag  : F7 B9 05 6A  86 92 6C F3   15 
CTR Start: 01 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 01   16 
CTR[0001]: 7A C0 10 3D  ED 38 F6 C0  39 0D BA 87  1C 49 91 F4   17 
CTR[0002]: D4 0C DE 22  D5 F9 24 24  F7 BE 9A 56  9D A7 9F 51   18 
CTR[MIC ]: 57 28 D0 04  96 D2 65 E5   19 
Total packet length =   40. [Encrypted] 20 
           00 01 02 03  04 05 06 07  72 C9 1A 36  E1 35 F8 CF   21 
           29 1C A8 94  08 5C 87 E3  CC 15 C4 39  C9 E4 3A 3B   22 
           A0 91 D5 6E  10 40 09 16   23 
 24 
=============== Packet Vector #3 ================== 25 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   26 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.05040302 27 
Total packet length =   33. [Input (8 cleartext header octets)] 28 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   29 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   30 
           20  31 
CBC IV in: 59 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 19   32 
CBC IV out:6F 8A 12 F7  BF 8D 4D C5  A1 19 6E 95  DF F0 B4 27   33 
After xor: 6F 82 12 F6  BD 8E 49 C0  A7 1E 6E 95  DF F0 B4 27   [hdr] 34 
After AES: 37 E9 B7 8C  C2 20 17 E7  33 80 43 0C  BE F4 28 24   35 
After xor: 3F E0 BD 87  CE 2D 19 E8  23 91 51 1F  AA E1 3E 33   [msg] 36 
After AES: 90 CA 05 13  9F 4D 4E CF  22 6F E9 81  C5 9E 2D 40   37 
After xor: 88 D3 1F 08  83 50 50 D0  02 6F E9 81  C5 9E 2D 40   [msg] 38 
After AES: 73 B4 67 75  C0 26 DE AA  41 03 97 D6  70 FE 5F B0   39 
MIC tag  : 73 B4 67 75  C0 26 DE AA   40 
CTR Start: 01 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 01   41 
CTR[0001]: 59 B8 EF FF  46 14 73 12  B4 7A 1D 9D  39 3D 3C FF   42 
CTR[0002]: 69 F1 22 A0  78 C7 9B 89  77 89 4C 99  97 5C 23 78   43 
CTR[MIC ]: 39 6E C0 1A  7D B9 6E 6F   44 
Total packet length =   41. [Encrypted] 45 
           00 01 02 03  04 05 06 07  51 B1 E5 F4  4A 19 7D 1D   46 
           A4 6B 0F 8E  2D 28 2A E8  71 E8 38 BB  64 DA 85 96   47 
           57 4A DA A7  6F BD 9F B0  C5  48 
 49 
=============== Packet Vector #4 ================== 50 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   51 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.06050403 52 
Total packet length =   31. [Input (12 cleartext header octets)] 53 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   54 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E  55 
CBC IV in: 59 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 13   56 
CBC IV out:06 65 2C 60  0E F5 89 63  CA C3 25 A9  CD 3E 2B E1   57 
After xor: 06 69 2C 61  0C F6 8D 66  CC C4 2D A0  C7 35 2B E1   [hdr] 58 
After AES: A0 75 09 AC  15 C2 58 86  04 2F 80 60  54 FE A6 86   59 
After xor: AC 78 07 A3  05 D3 4A 95  10 3A 96 77  4C E7 BC 9D   [msg] 60 
After AES: 64 4C 09 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF   61 
After xor: 78 51 17 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF   [msg] 62 
After AES: 4B 4F 4B 39  B5 93 E6 BF  B0 B2 C2 B7  0F 29 CD 7A   63 
MIC tag  : 4B 4F 4B 39  B5 93 E6 BF   64 
CTR Start: 01 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 01   65 
CTR[0001]: AE 81 66 6A  83 8B 88 6A  EE BF 4A 5B  32 84 50 8A   66 
CTR[0002]: D1 B1 92 06  AC 93 9E 2F  B6 DD CE 10  A7 74 FD 8D   67 
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CTR[MIC ]: DD 87 2A 80  7C 75 F8 4E   1 
Total packet length =   39. [Encrypted] 2 
           00 01 02 03  04 05 06 07  08 09 0A 0B  A2 8C 68 65   3 
           93 9A 9A 79  FA AA 5C 4C  2A 9D 4A 91  CD AC 8C 96   4 
           C8 61 B9 C9  E6 1E F1  5 
 6 
=============== Packet Vector #5 ================== 7 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   8 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.07060504 9 
Total packet length =   32. [Input (12 cleartext header octets)] 10 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   11 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   12 
CBC IV in: 59 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 14   13 
CBC IV out:00 4C 50 95  45 80 3C 48  51 CD E1 3B  56 C8 9A 85   14 
After xor: 00 40 50 94  47 83 38 4D  57 CA E9 32  5C C3 9A 85   [hdr] 15 
After AES: E2 B8 F7 CE  49 B2 21 72  84 A8 EA 84  FA AD 67 5C   16 
After xor: EE B5 F9 C1  59 A3 33 61  90 BD FC 93  E2 B4 7D 47   [msg] 17 
After AES: 3E FB 36 72  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3   18 
After xor: 22 E6 28 6D  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3   [msg] 19 
After AES: 48 B9 E8 82  55 05 4A B5  49 0A 95 F9  34 9B 4B 5E   20 
MIC tag  : 48 B9 E8 82  55 05 4A B5   21 
CTR Start: 01 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 01   22 
CTR[0001]: D0 FC F5 74  4D 8F 31 E8  89 5B 05 05  4B 7C 90 C3   23 
CTR[0002]: 72 A0 D4 21  9F 0D E1 D4  04 83 BC 2D  3D 0C FC 2A   24 
CTR[MIC ]: 19 51 D7 85  28 99 67 26   25 
Total packet length =   40. [Encrypted] 26 
           00 01 02 03  04 05 06 07  08 09 0A 0B  DC F1 FB 7B   27 
           5D 9E 23 FB  9D 4E 13 12  53 65 8A D8  6E BD CA 3E   28 
           51 E8 3F 07  7D 9C 2D 93   29 
 30 
=============== Packet Vector #6 ================== 31 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   32 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.08070605 33 
Total packet length =   33. [Input (12 cleartext header octets)] 34 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   35 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   36 
           20  37 
CBC IV in: 59 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 15   38 
CBC IV out:04 72 DA 4C  6F F6 0A 63  06 52 1A 06  04 80 CD E5   39 
After xor: 04 7E DA 4D  6D F5 0E 66  00 55 12 0F  0E 8B CD E5   [hdr] 40 
After AES: 64 4C 36 A5  A2 27 37 62  0B 89 F1 D7  BF F2 73 D4   41 
After xor: 68 41 38 AA  B2 36 25 71  1F 9C E7 C0  A7 EB 69 CF   [msg] 42 
After AES: 41 E1 19 CD  19 24 CE 77  F1 2F A6 60  C1 6E BB 4E   43 
After xor: 5D FC 07 D2  39 24 CE 77  F1 2F A6 60  C1 6E BB 4E   [msg] 44 
After AES: A5 27 D8 15  6A C3 59 BF  1C B8 86 E6  2F 29 91 29   45 
MIC tag  : A5 27 D8 15  6A C3 59 BF   46 
CTR Start: 01 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 01   47 
CTR[0001]: 63 CC BE 1E  E0 17 44 98  45 64 B2 3A  8D 24 5C 80   48 
CTR[0002]: 39 6D BA A2  A7 D2 CB D4  B5 E1 7C 10  79 45 BB C0   49 
CTR[MIC ]: E5 7D DC 56  C6 52 92 2B   50 
Total packet length =   41. [Encrypted] 51 
           00 01 02 03  04 05 06 07  08 09 0A 0B  6F C1 B0 11   52 
           F0 06 56 8B  51 71 A4 2D  95 3D 46 9B  25 70 A4 BD   53 
           87 40 5A 04  43 AC 91 CB  94  54 
 55 
=============== Packet Vector #7 ================== 56 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   57 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.09080706 58 
Total packet length =   31. [Input (8 cleartext header octets)] 59 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   60 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E  61 
CBC IV in: 61 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 17   62 
CBC IV out:60 06 C5 72  DA 23 9C BF  A0 5B 0A DE  D2 CD A8 1E   63 
After xor: 60 0E C5 73  D8 20 98 BA  A6 5C 0A DE  D2 CD A8 1E   [hdr] 64 
After AES: 41 7D E2 AE  94 E2 EA D9  00 FC 44 FC  D0 69 52 27   65 
After xor: 49 74 E8 A5  98 EF E4 D6  10 ED 56 EF  C4 7C 44 30   [msg] 66 
After AES: 2A 6C 42 CA  49 D7 C7 01  C5 7D 59 FF  87 16 49 0E   67 
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After xor: 32 75 58 D1  55 CA D9 01  C5 7D 59 FF  87 16 49 0E   [msg] 1 
After AES: 89 8B D6 45  4E 27 20 BB  D2 7E F3 15  7A 7C 90 B2   2 
MIC tag  : 89 8B D6 45  4E 27 20 BB  D2 7E  3 
CTR Start: 01 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 01   4 
CTR[0001]: 09 3C DB B9  C5 52 4F DA  C1 C5 EC D2  91 C4 70 AF   5 
CTR[0002]: 11 57 83 86  E2 C4 72 B4  8E CC 8A AD  AB 77 6F CB   6 
CTR[MIC ]: 8D 07 80 25  62 B0 8C 00  A6 EE  7 
Total packet length =   41. [Encrypted] 8 
           00 01 02 03  04 05 06 07  01 35 D1 B2  C9 5F 41 D5   9 
           D1 D4 FE C1  85 D1 66 B8  09 4E 99 9D  FE D9 6C 04   10 
           8C 56 60 2C  97 AC BB 74  90  11 
 12 
=============== Packet Vector #8 ================== 13 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   14 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.0A090807 15 
Total packet length =   32. [Input (8 cleartext header octets)] 16 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   17 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   18 
CBC IV in: 61 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 18   19 
CBC IV out:63 A3 FA E4  6C 79 F3 FA  78 38 B8 A2  80 36 B6 0B   20 
After xor: 63 AB FA E5  6E 7A F7 FF  7E 3F B8 A2  80 36 B6 0B   [hdr] 21 
After AES: 1C 99 1A 3D  B7 60 79 27  34 40 79 1F  AD 8B 5B 02   22 
After xor: 14 90 10 36  BB 6D 77 28  24 51 6B 0C  B9 9E 4D 15   [msg] 23 
After AES: 14 19 E8 E8  CB BE 75 58  E1 E3 BE 4B  6C 9F 82 E3   24 
After xor: 0C 00 F2 F3  D7 A3 6B 47  E1 E3 BE 4B  6C 9F 82 E3   [msg] 25 
After AES: E0 16 E8 1C  7F 7B 8A 38  A5 38 F2 CB  5B B6 C1 F2   26 
MIC tag  : E0 16 E8 1C  7F 7B 8A 38  A5 38  27 
CTR Start: 01 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 01   28 
CTR[0001]: 73 7C 33 91  CC 8E 13 DD  E0 AA C5 4B  6D B7 EB 98   29 
CTR[0002]: 74 B7 71 77  C5 AA C5 3B  04 A4 F8 70  8E 92 EB 2B   30 
CTR[MIC ]: 21 6D AC 2F  8B 4F 1C 07  91 8C  31 
Total packet length =   42. [Encrypted] 32 
           00 01 02 03  04 05 06 07  7B 75 39 9A  C0 83 1D D2   33 
           F0 BB D7 58  79 A2 FD 8F  6C AE 6B 6C  D9 B7 DB 24   34 
           C1 7B 44 33  F4 34 96 3F  34 B4  35 
 36 
=============== Packet Vector #9 ================== 37 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   38 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.0B0A0908 39 
Total packet length =   33. [Input (8 cleartext header octets)] 40 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   41 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   42 
           20  43 
CBC IV in: 61 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 19   44 
CBC IV out:4F 2C 86 11  1E 08 2A DD  6B 44 21 3A  B5 13 13 16   45 
After xor: 4F 24 86 10  1C 0B 2E D8  6D 43 21 3A  B5 13 13 16   [hdr] 46 
After AES: F6 EC 56 87  3C 57 12 DC  9C C5 3C A8  D4 D1 ED 0A   47 
After xor: FE E5 5C 8C  30 5A 1C D3  8C D4 2E BB  C0 C4 FB 1D   [msg] 48 
After AES: 17 C1 80 A5  31 53 D4 C3  03 85 0C 95  65 80 34 52   49 
After xor: 0F D8 9A BE  2D 4E CA DC  23 85 0C 95  65 80 34 52   [msg] 50 
After AES: 46 A1 F6 E2  B1 6E 75 F8  1C F5 6B 1A  80 04 44 1B   51 
MIC tag  : 46 A1 F6 E2  B1 6E 75 F8  1C F5  52 
CTR Start: 01 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 01   53 
CTR[0001]: 8A 5A 10 6B  C0 29 9A 55  5B 93 6B 0B  0E A0 DE 5A   54 
CTR[0002]: EA 05 FD E2  AB 22 5C FE  B7 73 12 CB  88 D9 A5 4A   55 
CTR[MIC ]: AC 3D F1 07  DA 30 C4 86  43 BB  56 
Total packet length =   43. [Encrypted] 57 
           00 01 02 03  04 05 06 07  82 53 1A 60  CC 24 94 5A   58 
           4B 82 79 18  1A B5 C8 4D  F2 1C E7 F9  B7 3F 42 E1   59 
           97 EA 9C 07  E5 6B 5E B1  7E 5F 4E  60 
 61 
=============== Packet Vector #10 ================== 62 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   63 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.0C0B0A09 64 
Total packet length =   31. [Input (12 cleartext header octets)] 65 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   66 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E  67 
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CBC IV in: 61 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 13   1 
CBC IV out:7F B8 0A 32  E9 80 57 46  EC 31 6C 3A  B2 A2 EB 5D   2 
After xor: 7F B4 0A 33  EB 83 53 43  EA 36 64 33  B8 A9 EB 5D   [hdr] 3 
After AES: 7E 96 96 BF  F1 56 D6 A8  6E AC F5 7B  7F 23 47 5A   4 
After xor: 72 9B 98 B0  E1 47 C4 BB  7A B9 E3 6C  67 3A 5D 41   [msg] 5 
After AES: 8B 4A EE 42  04 24 8A 59  FA CC 88 66  57 66 DD 72   6 
After xor: 97 57 F0 42  04 24 8A 59  FA CC 88 66  57 66 DD 72   [msg] 7 
After AES: 41 63 89 36  62 ED D7 EB  CD 6E 15 C1  89 48 62 05   8 
MIC tag  : 41 63 89 36  62 ED D7 EB  CD 6E  9 
CTR Start: 01 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 01   10 
CTR[0001]: 0B 39 2B 9B  05 66 97 06  3F 12 56 8F  2B 13 A1 0F   11 
CTR[0002]: 07 89 65 25  23 40 94 3B  9E 69 B2 56  CC 5E F7 31   12 
CTR[MIC ]: 17 09 20 76  09 A0 4E 72  45 B3  13 
Total packet length =   41. [Encrypted] 14 
           00 01 02 03  04 05 06 07  08 09 0A 0B  07 34 25 94   15 
           15 77 85 15  2B 07 40 98  33 0A BB 14  1B 94 7B 56   16 
           6A A9 40 6B  4D 99 99 88  DD  17 
 18 
=============== Packet Vector #11 ================== 19 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   20 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.0D0C0B0A 21 
Total packet length =   32. [Input (12 cleartext header octets)] 22 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   23 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   24 
CBC IV in: 61 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 14   25 
CBC IV out:B0 84 85 79  51 D2 FA 42  76 EF 3A D7  14 B9 62 87   26 
After xor: B0 88 85 78  53 D1 FE 47  70 E8 32 DE  1E B2 62 87   [hdr] 27 
After AES: C9 B3 64 7E  D8 79 2A 5C  65 B7 CE CC  19 0A 97 0A   28 
After xor: C5 BE 6A 71  C8 68 38 4F  71 A2 D8 DB  01 13 8D 11   [msg] 29 
After AES: 34 0F 69 17  FA B9 19 D6  1D AC D0 35  36 D6 55 8B   30 
After xor: 28 12 77 08  FA B9 19 D6  1D AC D0 35  36 D6 55 8B   [msg] 31 
After AES: 6B 5E 24 34  12 CC C2 AD  6F 1B 11 C3  A1 A9 D8 BC   32 
MIC tag  : 6B 5E 24 34  12 CC C2 AD  6F 1B  33 
CTR Start: 01 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 01   34 
CTR[0001]: 6B 66 BC 0C  90 A1 F1 12  FC BE 6F 4E  12 20 77 BC   35 
CTR[0002]: 97 9E 57 2B  BE 65 8A E5  CC 20 11 83  2A 9A 9B 5B   36 
CTR[MIC ]: 9E 64 86 DD  02 B6 49 C1  6D 37  37 
Total packet length =   42. [Encrypted] 38 
           00 01 02 03  04 05 06 07  08 09 0A 0B  67 6B B2 03   39 
           80 B0 E3 01  E8 AB 79 59  0A 39 6D A7  8B 83 49 34   40 
           F5 3A A2 E9  10 7A 8B 6C  02 2C  41 
 42 
=============== Packet Vector #12 ================== 43 
AES Key:   C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   44 
      TA = A0 A1 A2 A3  A4 A5   48-bit pktNum = 0000.0E0D0C0B 45 
Total packet length =   33. [Input (12 cleartext header octets)] 46 
           00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F   47 
           10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   48 
           20  49 
CBC IV in: 61 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 15   50 
CBC IV out:5F 8E 8D 02  AD 95 7C 5A  36 14 CF 63  40 16 97 4F   51 
After xor: 5F 82 8D 03  AF 96 78 5F  30 13 C7 6A  4A 1D 97 4F   [hdr] 52 
After AES: 63 FA BD 69  B9 55 65 FF  54 AA F4 60  88 7D EC 9F   53 
After xor: 6F F7 B3 66  A9 44 77 EC  40 BF E2 77  90 64 F6 84   [msg] 54 
After AES: 5A 76 5F 0B  93 CE 4F 6A  B4 1D 91 30  18 57 6A D7   55 
After xor: 46 6B 41 14  B3 CE 4F 6A  B4 1D 91 30  18 57 6A D7   [msg] 56 
After AES: 9D 66 92 41  01 08 D5 B6  A1 45 85 AC  AF 86 32 E8   57 
MIC tag  : 9D 66 92 41  01 08 D5 B6  A1 45  58 
CTR Start: 01 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 01   59 
CTR[0001]: CC F2 AE D9  E0 4A C9 74  E6 58 55 B3  2B 94 30 BF   60 
CTR[0002]: A2 CA AC 11  63 F4 07 E5  E5 F6 E3 B3  79 0F 79 F8   61 
CTR[MIC ]: 50 7C 31 57  63 EF 78 D3  77 9E  62 
Total packet length =   43. [Encrypted] 63 
           00 01 02 03  04 05 06 07  08 09 0A 0B  C0 FF A0 D6   64 
           F0 5B DB 67  F2 4D 43 A4  33 8D 2A A4  BE D7 B2 0E   65 
           43 CD 1A A3  16 62 E7 AD  65 D6 DB  66 
 67 
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=============== Packet Vector #13 ================== 1 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   2 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = 2D38.1C9A0292 3 
Total packet length =   31. [Input (8 cleartext header octets)] 4 
           94 51 99 9F  03 E1 E7 2B  5F AE 94 A9  38 35 1C E8   5 
           DF 8B E9 F5  D9 46 54 26  5A 67 74 8E  E6 31 F6  6 
CBC IV in: 59 00 2D 38  1C 9A 02 92  42 EC 39 C1  86 99 00 17   7 
CBC IV out:B0 E6 25 C9  37 B1 66 C5  70 79 3B 99  7D F0 C8 EC   8 
After xor: B0 EE B1 98  AE 2E 65 24  97 52 3B 99  7D F0 C8 EC   [hdr] 9 
After AES: 98 60 CE 17  C0 FE C7 9E  9B 00 8B 8A  99 BC 4C B2   10 
After xor: C7 CE 5A BE  F8 CB DB 76  44 8B 62 7F  40 FA 18 94   [msg] 11 
After AES: 42 5F 75 68  6D 69 31 EE  F6 B3 F4 3D  10 77 6F F4   12 
After xor: 18 38 01 E6  8B 58 C7 EE  F6 B3 F4 3D  10 77 6F F4   [msg] 13 
After AES: EF 93 3F 7F  9F B5 7D 54  BF 29 32 5A  3F 69 9C 5D   14 
MIC tag  : EF 93 3F 7F  9F B5 7D 54   15 
CTR Start: 01 00 2D 38  1C 9A 02 92  42 EC 39 C1  86 99 00 01   16 
CTR[0001]: 9B 63 18 4C  23 A5 B1 18  49 71 1A 49  5C 40 DD DB   17 
CTR[0002]: 2E F5 4D 53  86 73 A0 6E  A5 AD EB 84  D6 A9 37 02   18 
CTR[MIC ]: 2F 45 06 56  3D 33 82 3B   19 
Total packet length =   39. [Encrypted] 20 
           94 51 99 9F  03 E1 E7 2B  C4 CD 8C E5  1B 90 AD F0   21 
           96 FA F3 BC  85 06 89 FD  74 92 39 DD  60 42 56 C0   22 
           D6 39 29 A2  86 FF 6F  23 
 24 
=============== Packet Vector #14 ================== 25 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   26 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = 4DB9.0282DD86 27 
Total packet length =   32. [Input (8 cleartext header octets)] 28 
           50 D2 5E F4  B3 92 86 5A  06 F1 6B 83  83 88 72 91   29 
           16 B6 F7 B8  4D 5D 44 1F  70 D6 8F 6B  A0 96 06 C3   30 
CBC IV in: 59 00 4D B9  02 82 DD 86  42 EC 39 C1  86 99 00 18   31 
CBC IV out:92 27 D3 5E  DD 64 94 B2  C9 6A 6F 0F  6F 3E AF DA   32 
After xor: 92 2F 83 8C  83 90 27 20  4F 30 6F 0F  6F 3E AF DA   [hdr] 33 
After AES: 9D 59 21 A7  EE 66 16 56  A6 4F D9 BA  5D 63 81 7A   34 
After xor: 9B A8 4A 24  6D EE 64 C7  B0 F9 2E 02  10 3E C5 65   [msg] 35 
After AES: 52 98 87 DB  DD 37 86 00  CE F4 83 C1  D1 8E 35 56   36 
After xor: 22 4E 08 B0  7D A1 80 C3  CE F4 83 C1  D1 8E 35 56   [msg] 37 
After AES: 46 AC 99 A0  50 35 91 70  1A A2 9E E0  B3 5F 72 9D   38 
MIC tag  : 46 AC 99 A0  50 35 91 70   39 
CTR Start: 01 00 4D B9  02 82 DD 86  42 EC 39 C1  86 99 00 01   40 
CTR[0001]: 72 D0 3E 15  C3 F1 D5 65  66 32 A8 F2  CF A7 D1 9F   41 
CTR[0002]: 52 69 9E 35  C9 C5 EE 07  70 80 67 C0  2B 38 41 20   42 
CTR[MIC ]: E7 B7 A3 E1  84 B8 9C 6F   43 
Total packet length =   40. [Encrypted] 44 
           50 D2 5E F4  B3 92 86 5A  74 21 55 96  40 79 A7 F4   45 
           70 84 5F 4A  82 FA 95 80  22 BF 11 5E  69 53 E8 C4   46 
           A1 1B 3A 41  D4 8D 0D 1F   47 
 48 
=============== Packet Vector #15 ================== 49 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   50 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = B5D4.B99983BA 51 
Total packet length =   33. [Input (8 cleartext header octets)] 52 
           6D 83 00 ED  50 09 A4 B2  6D E8 57 B7  58 49 19 CA   53 
           EE 43 9C E4  8E BE 0C AC  00 F2 F9 32  50 0A 1C DD   54 
           AC  55 
CBC IV in: 59 00 B5 D4  B9 99 83 BA  42 EC 39 C1  86 99 00 19   56 
CBC IV out:04 16 DE 1D  F7 77 E0 89  6E 07 B5 71  E9 1B 42 B2   57 
After xor: 04 1E B3 9E  F7 9A B0 80  CA B5 B5 71  E9 1B 42 B2   [hdr] 58 
After AES: 52 14 26 1E  6A 9D 50 38  D3 35 D5 76  0E ED E8 2E   59 
After xor: 3F FC 71 A9  32 D4 49 F2  3D 76 49 92  80 53 E4 82   [msg] 60 
After AES: 32 F2 0F FA  32 81 03 14  F9 CA FD C1  5E 37 27 0E   61 
After xor: 32 00 F6 C8  62 8B 1F C9  55 CA FD C1  5E 37 27 0E   [msg] 62 
After AES: 39 F5 F2 1E  2E 57 D7 14  96 46 57 CA  3B 70 A8 4C   63 
MIC tag  : 39 F5 F2 1E  2E 57 D7 14   64 
CTR Start: 01 00 B5 D4  B9 99 83 BA  42 EC 39 C1  86 99 00 01   65 
CTR[0001]: 19 22 A3 83  B9 00 F2 DB  76 F3 84 65  D5 01 B4 C4   66 
CTR[0002]: 50 6C 24 D4  0F 88 DB B0  68 98 12 E5  6E 64 A0 3B   67 
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CTR[MIC ]: 5B D9 B1 BB  D3 93 45 CA   1 
Total packet length =   41. [Encrypted] 2 
           6D 83 00 ED  50 09 A4 B2  74 CA F4 34  E1 49 EB 11   3 
           98 B0 18 81  5B BF B8 68  50 9E DD E6  5F 82 C7 6D   4 
           C4 62 2C 43  A5 FD C4 92  DE  5 
 6 
=============== Packet Vector #16 ================== 7 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   8 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = AA65.BACC0941 9 
Total packet length =   31. [Input (12 cleartext header octets)] 10 
           EF 8F 46 B4  C9 77 98 32  BB F1 0A F1  C0 63 E7 C3   11 
           DD 47 94 DF  53 A7 CD 68  CD 91 BF 29  04 4A 0B  12 
CBC IV in: 59 00 AA 65  BA CC 09 41  42 EC 39 C1  86 99 00 13   13 
CBC IV out:C5 95 2A 10  39 2B 60 9B  2C D5 30 83  CD 1D C8 FE   14 
After xor: C5 99 C5 9F  7F 9F A9 EC  B4 E7 8B 72  C7 EC C8 FE   [hdr] 15 
After AES: 41 D0 4D 56  FF DD D7 3D  AC CD AC 7D  63 64 3E 31   16 
After xor: 81 B3 AA 95  22 9A 43 E2  FF 6A 61 15  AE F5 81 18   [msg] 17 
After AES: 9C 86 E1 EE  BE 2B F0 BD  6D 11 20 3D  24 B1 B0 96   18 
After xor: 98 CC EA EE  BE 2B F0 BD  6D 11 20 3D  24 B1 B0 96   [msg] 19 
After AES: 3F 3A ED 74  AB C6 52 6A  DA C8 8D 14  0A 9F 84 23   20 
MIC tag  : 3F 3A ED 74  AB C6 52 6A   21 
CTR Start: 01 00 AA 65  BA CC 09 41  42 EC 39 C1  86 99 00 01   22 
CTR[0001]: BD EF 70 9B  3C 70 A7 98  0F 36 C4 6E  7C D1 73 8D   23 
CTR[0002]: 23 CC E5 E9  54 AD A2 09  21 17 FC 75  10 09 B3 E3   24 
CTR[MIC ]: 38 17 B3 02  58 0A BA 84   25 
Total packet length =   39. [Encrypted] 26 
           EF 8F 46 B4  C9 77 98 32  BB F1 0A F1  7D 8C 97 58   27 
           E1 37 33 47  5C 91 09 06  B1 40 CC A4  27 86 EE 07   28 
           2D 5E 76 F3  CC E8 EE  29 
 30 
=============== Packet Vector #17 ================== 31 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   32 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = F01B.307ADDDB 33 
Total packet length =   32. [Input (12 cleartext header octets)] 34 
           33 DF F8 40  E0 8C 16 9F  CB 1F F5 9F  B0 54 99 DD   35 
           DD 6B EC 1E  13 2B 57 CB  0F DD 93 CD  E0 89 43 87   36 
CBC IV in: 59 00 F0 1B  30 7A DD DB  42 EC 39 C1  86 99 00 14   37 
CBC IV out:5C 16 AC 74  00 F3 24 1D  0F F1 5D 17  D2 CE 67 0E   38 
After xor: 5C 1A 9F AB  F8 B3 C4 91  19 6E 96 08  27 51 67 0E   [hdr] 39 
After AES: 8C 93 BC 6C  CA 8C 40 BB  03 FA 7C 0C  4F A0 10 42   40 
After xor: 3C C7 25 B1  17 E7 AC A5  10 D1 2B C7  40 7D 83 8F   [msg] 41 
After AES: 0C 03 5F 87  D7 DA 97 E5  77 7D D6 9C  EB 8C 84 86   42 
After xor: EC 8A 1C 00  D7 DA 97 E5  77 7D D6 9C  EB 8C 84 86   [msg] 43 
After AES: D0 8E 6D AC  0C 55 2B 34  F8 D3 05 82  B7 28 E5 C4   44 
MIC tag  : D0 8E 6D AC  0C 55 2B 34   45 
CTR Start: 01 00 F0 1B  30 7A DD DB  42 EC 39 C1  86 99 00 01   46 
CTR[0001]: 3F 92 05 5E  E5 B1 2E F0  AF 6D C0 47  E8 FB 18 9E   47 
CTR[0002]: C6 FD 0C C5  9F 93 37 F8  37 29 6A A6  E5 B7 00 F4   48 
CTR[MIC ]: FD F5 FD 7C  00 82 8F 95   49 
Total packet length =   40. [Encrypted] 50 
           33 DF F8 40  E0 8C 16 9F  CB 1F F5 9F  8F C6 9C 83   51 
           38 DA C2 EE  BC 46 97 8C  E7 26 8B 53  26 74 4F 42   52 
           2D 7B 90 D0  0C D7 A4 A1   53 
 54 
=============== Packet Vector #18 ================== 55 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   56 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = CE82.0B57FD4C 57 
Total packet length =   33. [Input (12 cleartext header octets)] 58 
           55 68 62 0F  19 A9 5D CB  98 4B C7 18  27 BF 59 E8   59 
           8B FD 03 97  17 9F 7A CA  E6 B6 16 97  26 7A C0 5F   60 
           24  61 
CBC IV in: 59 00 CE 82  0B 57 FD 4C  42 EC 39 C1  86 99 00 15   62 
CBC IV out:99 2D DF 68  2D 48 EF 2A  14 F0 16 6E  E4 14 9B 54   63 
After xor: 99 21 8A 00  4F 47 F6 83  49 3B 8E 25  23 0C 9B 54   [hdr] 64 
After AES: B7 97 9F B4  98 BC 07 E8  D2 60 92 00  1B 26 55 52   65 
After xor: 90 28 C6 5C  13 41 04 7F  C5 FF E8 CA  FD 90 43 C5   [msg] 66 
After AES: 2E 3E 5C 36  EA 3B B1 BA  0D 4F D0 EE  48 E7 38 DD   67 
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After xor: 08 44 9C 69  CE 3B B1 BA  0D 4F D0 EE  48 E7 38 DD   [msg] 1 
After AES: 48 82 DE 1F  F0 3F 78 29  77 7C 01 A0  80 45 D1 D7   2 
MIC tag  : 48 82 DE 1F  F0 3F 78 29   3 
CTR Start: 01 00 CE 82  0B 57 FD 4C  42 EC 39 C1  86 99 00 01   4 
CTR[0001]: 34 18 98 69  BD 1B AF 27  05 F2 7A C7  BF 2E F7 8A   5 
CTR[0002]: 1E C6 81 EE  BC EE AF 2C  83 A1 37 C8  29 9B B1 DF   6 
CTR[MIC ]: 62 C0 72 9E  52 D2 30 F3   7 
Total packet length =   41. [Encrypted] 8 
           55 68 62 0F  19 A9 5D CB  98 4B C7 18  13 A7 C1 81   9 
           36 E6 AC B0  12 6D 00 0D  59 98 E1 1D  38 BC 41 B1   10 
           98 2A 42 AC  81 A2 ED 48  DA  11 
 12 
=============== Packet Vector #19 ================== 13 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   14 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = 34B5.2F55F836 15 
Total packet length =   31. [Input (8 cleartext header octets)] 16 
           30 27 70 18  36 DC FE E3  01 DE B7 F9  4D 49 E3 20   17 
           BF AA C3 99  25 89 A5 6A  72 85 AE 03  CA 56 5D  18 
CBC IV in: 61 00 34 B5  2F 55 F8 36  42 EC 39 C1  86 99 00 17   19 
CBC IV out:07 03 FA 5A  50 F2 3C 36  E0 29 79 21  F4 B9 75 1B   20 
After xor: 07 0B CA 7D  20 EA 0A EA  1E CA 79 21  F4 B9 75 1B   [hdr] 21 
After AES: 2E 47 BB 82  95 84 25 CC  93 DD 77 9B  77 F2 D3 24   22 
After xor: 2F 99 0C 7B  D8 CD C6 EC  2C 77 B4 02  52 7B 76 4E   [msg] 23 
After AES: 3C 1D D1 EB  A5 E3 CB A0  14 93 CD C7  61 FC EB 29   24 
After xor: 4E 98 7F E8  6F B5 96 A0  14 93 CD C7  61 FC EB 29   [msg] 25 
After AES: F7 B0 EB A1  6C 26 4B 50  D4 DC 9F 6D  E1 B2 5B FE   26 
MIC tag  : F7 B0 EB A1  6C 26 4B 50  D4 DC  27 
CTR Start: 01 00 34 B5  2F 55 F8 36  42 EC 39 C1  86 99 00 01   28 
CTR[0001]: 83 5D 2C BC  1E 6D A5 E8  BC 67 D3 56  33 F0 2B D1   29 
CTR[0002]: E8 99 77 FC  10 10 49 92  3C FC 00 2A  85 79 A7 C0   30 
CTR[MIC ]: 53 DD 0A 76  3B 12 C5 33  01 98  31 
Total packet length =   41. [Encrypted] 32 
           30 27 70 18  36 DC FE E3  82 83 9B 45  53 24 46 C8   33 
           03 CD 10 CF  16 79 8E BB  9A 1C D9 FF  DA 46 14 A4   34 
           6D E1 D7 57  34 8E 63 D5  44  35 
 36 
=============== Packet Vector #20 ================== 37 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   38 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = 9BB8.8848BE25 39 
Total packet length =   32. [Input (8 cleartext header octets)] 40 
           54 FF D9 C2  A4 AE 72 B1  C9 33 92 50  20 D3 04 61   41 
           5F B1 4A EF  9C 67 0E 0D  9F 8C D1 11  9D 25 69 5F   42 
CBC IV in: 61 00 9B B8  88 48 BE 25  42 EC 39 C1  86 99 00 18   43 
CBC IV out:EF 78 98 2E  7A 90 6E D4  72 A8 F4 11  8D E7 94 8A   44 
After xor: EF 70 CC D1  A3 52 CA 7A  00 19 F4 11  8D E7 94 8A   [hdr] 45 
After AES: D1 61 C3 62  F8 3C 51 3D  F3 FF 7F 1A  26 D4 F6 B9   46 
After xor: 18 52 51 32  D8 EF 55 5C  AC 4E 35 F5  BA B3 F8 B4   [msg] 47 
After AES: 46 CA 2F 4A  C4 99 EF C5  3B 5F FB 85  14 F7 BF 83   48 
After xor: D9 46 FE 5B  59 BC 86 9A  3B 5F FB 85  14 F7 BF 83   [msg] 49 
After AES: CD 55 F0 30  92 12 AE 02  EA 25 FA 94  87 DE 36 0F   50 
MIC tag  : CD 55 F0 30  92 12 AE 02  EA 25  51 
CTR Start: 01 00 9B B8  88 48 BE 25  42 EC 39 C1  86 99 00 01   52 
CTR[0001]: E8 97 0A 1A  3A 73 B4 9F  89 E3 75 CB  F2 14 39 55   53 
CTR[0002]: E9 CE 11 29  F6 5F 32 11  CD 7A 86 34  9C 67 F1 B5   54 
CTR[MIC ]: 49 75 2B DA  6D 4A E9 9E  F8 4C  55 
Total packet length =   42. [Encrypted] 56 
           54 FF D9 C2  A4 AE 72 B1  21 A4 98 4A  1A A0 B0 FE   57 
           D6 52 3F 24  6E 73 37 58  76 42 C0 38  6B 7A 5B 4E   58 
           84 20 DB EA  FF 58 47 9C  12 69  59 
 60 
=============== Packet Vector #21 ================== 61 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   62 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = 6E78.B6723686 63 
Total packet length =   33. [Input (8 cleartext header octets)] 64 
           AF BB B4 19  9C 13 D3 77  CE 25 C4 A7  B7 3B 06 1F   65 
           58 6E 08 93  F9 17 8D CB  11 31 B2 E6  27 86 9A 4F   66 
           44  67 
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CBC IV in: 61 00 6E 78  B6 72 36 86  42 EC 39 C1  86 99 00 19   1 
CBC IV out:15 BF E5 B7  83 9A C6 00  B1 6F C9 F5  DA A8 3F 1C   2 
After xor: 15 B7 4A 0C  37 83 5A 13  62 18 C9 F5  DA A8 3F 1C   [hdr] 3 
After AES: E4 19 EF 1E  69 A1 48 EE  16 60 84 7D  D5 C9 D1 D6   4 
After xor: 2A 3C 2B B9  DE 9A 4E F1  4E 0E 8C EE  2C DE 5C 1D   [msg] 5 
After AES: 31 02 9A 8B  CA A3 07 1D  84 80 76 51  1D 9E 22 41   6 
After xor: 20 33 28 6D  ED 25 9D 52  C0 80 76 51  1D 9E 22 41   [msg] 7 
After AES: 21 5E E1 31  37 17 98 A5  FD 6E BB 74  D4 8E 59 C1   8 
MIC tag  : 21 5E E1 31  37 17 98 A5  FD 6E  9 
CTR Start: 01 00 6E 78  B6 72 36 86  42 EC 39 C1  86 99 00 01   10 
CTR[0001]: 47 C1 8B 43  AF B6 3A C4  0A 7F CA C3  AE E4 83 0D   11 
CTR[0002]: D9 91 74 F0  AE 23 37 4F  54 45 80 0D  27 0D A4 49   12 
CTR[MIC ]: 17 E6 DC 69  6A 2E 09 B0  76 32  13 
Total packet length =   43. [Encrypted] 14 
           AF BB B4 19  9C 13 D3 77  89 E4 4F E4  18 8D 3C DB   15 
           52 11 C2 50  57 F3 0E C6  C8 A0 C6 16  89 A5 AD 00   16 
           10 36 B8 3D  58 5D 39 91  15 8B 5C  17 
 18 
=============== Packet Vector #22 ================== 19 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   20 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = D079.0F8F3A99 21 
Total packet length =   31. [Input (12 cleartext header octets)] 22 
           5E C4 44 5A  EA D7 1B B1  DA 9E B5 10  0B 5E 8D 9F   23 
           4F 27 49 CE  2B FC FF 25  B7 2C 81 17  55 CB 36  24 
CBC IV in: 61 00 D0 79  0F 8F 3A 99  42 EC 39 C1  86 99 00 13   25 
CBC IV out:47 4D BA 73  6A 5C 84 22  F5 0C 8B A3  60 72 F7 24   26 
After xor: 47 41 E4 B7  2E 06 6E F5  EE BD 51 3D  D5 62 F7 24   [hdr] 27 
After AES: A0 AF ED 92  55 EA 4C FC  5D 08 85 13  BE BF 07 25   28 
After xor: AB F1 60 0D  1A CD 05 32  76 F4 7A 36  09 93 86 32   [msg] 29 
After AES: F4 A9 E7 1A  D7 61 45 83  A0 CC 88 FA  25 5F B7 2D   30 
After xor: A1 62 D1 1A  D7 61 45 83  A0 CC 88 FA  25 5F B7 2D   [msg] 31 
After AES: 69 9C B6 66  03 78 1C 1B  92 93 86 F4  55 85 F4 6C   32 
MIC tag  : 69 9C B6 66  03 78 1C 1B  92 93  33 
CTR Start: 01 00 D0 79  0F 8F 3A 99  42 EC 39 C1  86 99 00 01   34 
CTR[0001]: 30 4E B1 9A  EF 85 41 18  7E A7 77 F9  8D 0F BF E5   35 
CTR[0002]: D1 8D 23 55  FA 2C 1C C7  F1 A5 86 A8  8E 7D 9E BF   36 
CTR[MIC ]: 64 C3 13 58  1E EE F5 E8  E5 F2  37 
Total packet length =   41. [Encrypted] 38 
           5E C4 44 5A  EA D7 1B B1  DA 9E B5 10  3B 10 3C 05   39 
           A0 A2 08 D6  55 5B 88 DC  3A 23 3E F2  84 46 15 0D   40 
           5F A5 3E 1D  96 E9 F3 77  61  41 
 42 
=============== Packet Vector #23 ================== 43 
AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   44 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = A625.D6288BF2 45 
Total packet length =   32. [Input (12 cleartext header octets)] 46 
           04 0C CF 5E  9E D7 4C EB  29 77 88 EB  E0 D2 59 4B   47 
           F4 18 94 D9  BE 58 C4 EA  A3 BF 82 BF  A1 C5 3C 23   48 
CBC IV in: 61 00 A6 25  D6 28 8B F2  42 EC 39 C1  86 99 00 14   49 
CBC IV out:4F BC D9 D4  BB D2 77 FE  6B B3 CA 7A  AD 95 71 D2   50 
After xor: 4F B0 DD D8  74 8C E9 29  27 58 E3 0D  25 7E 71 D2   [hdr] 51 
After AES: E0 DD 09 D3  48 43 C1 70  E2 7C FE B0  4D 87 0A 66   52 
After xor: 00 0F 50 98  BC 5B 55 A9  5C 24 3A 5A  EE 38 88 D9   [msg] 53 
After AES: 4C 05 CA CC  DA 7D 5B 07  DE CA C7 14  D4 26 C5 D6   54 
After xor: ED C0 F6 EF  DA 7D 5B 07  DE CA C7 14  D4 26 C5 D6   [msg] 55 
After AES: 84 C8 29 3A  41 A2 E5 8C  6E 66 B2 26  BB B4 15 0D   56 
MIC tag  : 84 C8 29 3A  41 A2 E5 8C  6E 66  57 
CTR Start: 01 00 A6 25  D6 28 8B F2  42 EC 39 C1  86 99 00 01   58 
CTR[0001]: 12 62 98 95  AB 26 D2 51  4C 32 59 F4  8E 21 19 4C   59 
CTR[0002]: 1E 70 D2 AF  FE 0A 84 D5  45 27 C4 25  75 5B 99 5D   60 
CTR[MIC ]: 0F EE 6A 8E  47 D2 BC 52  C9 CB  61 
Total packet length =   42. [Encrypted] 62 
           04 0C CF 5E  9E D7 4C EB  29 77 88 EB  F2 B0 C1 DE   63 
           5F 3E 46 88  F2 6A 9D 1E  2D 9E 9B F3  BF B5 EE 8C   64 
           8B 26 43 B4  06 70 59 DE  A7 AD  65 
 66 
=============== Packet Vector #24 ================== 67 
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AES Key:   71 FB FD 78  FB E2 99 29  82 01 24 CC  71 44 75 7E   1 
      TA = 42 EC 39 C1  86 99   48-bit pktNum = 7CD9.622F4AED 2 
Total packet length =   33. [Input (12 cleartext header octets)] 3 
           AB CB 0A 7E  49 E6 F8 74  E7 1D AA 1A  CC 96 CA 13   4 
           39 66 05 81  59 70 D4 65  1D 28 88 00  F2 35 DA 22   5 
           63  6 
CBC IV in: 61 00 7C D9  62 2F 4A ED  42 EC 39 C1  86 99 00 15   7 
CBC IV out:6B 58 00 94  F8 F3 99 9C  9E 23 D0 58  57 E8 F9 58   8 
After xor: 6B 54 AB 5F  F2 8D D0 7A  66 57 37 45  FD F2 F9 58   [hdr] 9 
After AES: 75 6A 35 9E  7F 06 79 D1  16 9E 8B FF  A1 4B 7C F1   10 
After xor: B9 FC FF 8D  46 60 7C 50  4F EE 5F 9A  BC 63 F4 F1   [msg] 11 
After AES: 00 12 C1 1D  3B 6F D0 B5  8E 72 2F A4  DB 2A 91 29   12 
After xor: F2 27 1B 3F  58 6F D0 B5  8E 72 2F A4  DB 2A 91 29   [msg] 13 
After AES: 65 71 83 09  48 3B 45 14  9C 05 90 A9  C7 96 56 E4   14 
MIC tag  : 65 71 83 09  48 3B 45 14  9C 05  15 
CTR Start: 01 00 7C D9  62 2F 4A ED  42 EC 39 C1  86 99 00 01   16 
CTR[0001]: A7 50 18 88  92 3F 63 B0  DA ED 59 36  2D 61 93 50   17 
CTR[0002]: 8C 32 57 34  AB 75 8E AB  57 A7 DB B0  F2 41 EA AD   18 
CTR[MIC ]: D8 39 8F F8  7A 1C 3F 34  E5 94  19 
Total packet length =   43. [Encrypted] 20 
           AB CB 0A 7E  49 E6 F8 74  E7 1D AA 1A  6B C6 D2 9B   21 
           AB 59 66 31  83 9D 8D 53  30 49 1B 50  7E 07 8D 16   22 
           C8 BD 48 0C  F1 32 27 7A  20 79 91  23 

F.8. Suggested pass-phrase-to-preshared-key mapping 24 

F.8.1 Introduction 25 

The RSN pre-shared key consists of 256 bits, or 64 bytes when represented in hex. It is difficult for a user 26 
to correctly enter 64 hex characters. Most users, however, are familiar with passwords and pass-phrases, 27 
and feel more comfortable entering them than entering keys. A user is more likely to be able to enter an 28 
ASCII password or pass-phrase, even though doing so limits the set of possible keys. This suggests that the 29 
best that can be done is to introduce a pass-phrase to preshared key mapping. 30 

This clause defines a pass-phrase to preshared key mapping that is the preferred mechanism of this sort for 31 
RSN and TSN networks. This pass-phrase mapping was introduced to encourage users unfamiliar with 32 
cryptographic concepts to enable the security features of their WLAN. 33 

A pass-phrase typically has about 2.5 bits of security per character, so the pass-phrase mapping converts an 34 
n byte password into a key with about 2.5n + 12 bits of security. Hence, it provides a relatively low level of 35 
security, with keys generated from short passwords subject to dictionary attack. Use of the key hash is 36 
recommended only for IT-less environments. A key generated from a pass-phrase of less than about 20 37 
characters is unlikely to deter attacks against small businesses and enterprises. 38 

The pass-phrase mapping defined here uses the PBKDF2 method from PKCS #5 v2.0: Password-based 39 
Cryptography Standard. 40 

PSK = PBKDF2(PassPhrase, ssid, ssidLength, 4096, 256) 41 

• PassPhrase is an ASCII string which has a minimum of 8 and a maximum of 63 characters not 42 
including the null terminator. The limit of 63 characters comes from the fact that 256 bits is 43 
represented by 64 characters in hex. 44 

PassPhrase should consist of characters from the following three groups 45 

 46 
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Group Examples 

Letters (upper and lower case) A, B, C, … (and a, b, c,…) 

Numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

Symbols (all characters not defined as letters or 
numerals) 

`~!@#$%^&*()_+=-{}|[]\”:;’<>?,./ 

 1 

• ssid is the SSID of ESS or IBSS where this pass-phrase is in use, encoded as the hex string used in 2 
the Beacons and Probe Responses for the ESS or IBSS. Implementations of this pass-phrase 3 
mapping should by default define a unique SSID for each AP, e.g., the BSSID of the AP, and non-4 
AP STA’s should learn the SSID from the AP, so the user need not enter it. 5 

• ssidlength is the number of octets of the ssid. 6 

• 4096 is the number of times the pass-phrase is hashed. 7 

• 256 is the number of bits output by the pass-phrase mapping. 8 

F.8.2 Reference implementation 9 

/* 10 
 * F(P, S, c, i) = U1 xor U2 xor ... Uc 11 
 * U1 = PRF(P, S || Int(i)) 12 
 * U2 = PRF(P, U1) 13 
 * Uc = PRF(P, Uc-1) 14 
 */ 15 
 16 
void F( 17 

char *password, 18 
unsigned char *ssid, 19 
int ssidlength, 20 
int iterations, 21 
int count, 22 
unsigned char *output) 23 

{ 24 
 unsigned char digest[36], digest1[A_SHA_DIGEST_LEN]; 25 
 int i, j; 26 
 27 
 /* U1 = PRF(P, S || int(i)) */ 28 
 memcpy(digest, ssid, ssidlength); 29 
 digest[ssidlength] = (unsigned char)((count>>24) & 0xff); 30 
 digest[ssidlength+1] = (unsigned char)((count>>16) & 0xff); 31 
 digest[ssidlength+2] = (unsigned char)((count>>8) & 0xff); 32 
 digest[ssidlength+3] = (unsigned char)(count & 0xff); 33 
 hmac_sha1((unsigned char*) password, (int) strlen(password), 34 
           digest, ssidlength+4, digest1); 35 
 36 
 /* output = U1 */ 37 
 memcpy(output, digest1, A_SHA_DIGEST_LEN); 38 
 39 
 for (i = 1; i < iterations; i++) { 40 
  /* Un = PRF(P, Un-1) */ 41 
  hmac_sha1((unsigned char*) password, (int) strlen(password), 42 
                 digest1, A_SHA_DIGEST_LEN, digest); 43 
  memcpy(digest1, digest, A_SHA_DIGEST_LEN); 44 
 45 
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  /* output = output xor Un */ 1 
  for (j = 0; j < A_SHA_DIGEST_LEN; j++) { 2 
   output[j] ^= digest[j]; 3 
  } 4 
 } 5 
} 6 
 7 
/* 8 
 * password - ascii string up to 63 characters in length 9 
 * ssid - octet string up to 32 octets 10 
 * ssidlength - length of ssid in octets 11 
 * output must be 40 octets in length and outputs 256 bits of key 12 
 */ 13 
int PasswordHash ( 14 

char *password, 15 
unsigned char *ssid, 16 
int ssidlength, 17 
unsigned char *output) 18 

{ 19 
 if ((strlen(password) > 63) || (ssidlength > 32)) 20 

return 0; 21 
 22 
 F(password, ssid, ssidlength, 4096, 1, output); 23 
 F(password, ssid, ssidlength, 4096, 2, 24 
           &output[A_SHA_DIGEST_LEN]); 25 
 return 1; 26 
} 27 

 28 

F.8.3 Test vectors 29 

Test case 1 30 
Pass Phrase = “password” 31 
SSID = { ‘I’, ‘E’, ‘E’ ‘E’ } 32 
SSIDLength = 4  33 
PSK  = 34 

534036bd932a231c80f8b52ccb18ce0d17cc78fc4675c7b4dfa4396540111450 35 

Test case 2 36 
Pass Phrase = “ThisIsAPassword” 37 
SSID = { ‘T’, ‘h’, ‘i’, ‘s’, ‘I’, ‘s’, ‘A’, ‘S’, ‘S’, ‘I’, ‘D’ } 38 
SSIDLength = 11 39 
PKS =  40 

520f0426ee757e8dfbb254e17971409a66969b2483f7492b5342dcce682b1155 41 

Test case 3 42 
Password = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa” 43 
SSID = {‘Z’,‘Z’,‘Z’,‘Z’, ‘Z’,‘Z’,‘Z’,‘Z’, ‘Z’,‘Z’,‘Z’,‘Z’, ‘Z’,‘Z’,‘Z’,‘Z’, ‘Z’,‘Z’,‘Z’,‘Z’, ‘Z’,‘Z’,‘Z’,‘Z’, 44 

‘Z’,‘Z’,‘Z’,‘Z’,‘Z’,‘Z’,‘Z’,‘Z’} 45 
SSIDLength = 32 46 
PKS =  47 

b4266b172c373a47260ee97faa0d199aaba2a31dbe5fc5a8becc1784857c0fbc 48 

F.9. Suggestions for random number generation 49 

In order to properly implement cryptographic protocols, every platform needs the ability to generate 50 
cryptographic quality random numbers. RFC 1750 explains the notion of cryptographic quality random 51 
numbers and provides advice on ways to harvest suitable randomness. It recommends sampling multiple 52 
sources each of which contains some randomness, and by passing the complete set of samples through a 53 
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pseudo-random function. By following this advice, an implementation can usually collect enough 1 
randomness to distill into a seed for a pseudo-random number generator whose output will be unpredictable. 2 

This annex suggests two sample techniques that can be combined with the other recommendations of RFC 3 
1750 to harvest randomness. The first method is a software solution that can be implemented on most 4 
hardware; the second is a hardware-assisted solution. These solutions are expository only, to demonstrate 5 
that it is feasible to harvest randomness on any 802.11 platform. They are not mutually exclusive, and they 6 
do not preclude the use of other sources of randomness when available; in this case, the more the merrier. 7 
As many sources of randomness as possible should be gathered into a buffer, and then hashed, to obtain a 8 
seed for the pseudo-random number generator. 9 

F.9.1 Software Sampling 10 

Due to the nature of clock circuits in modern electronics, there will be some lack of correlation between two 11 
clocks in two different pieces of equipment, even when high quality crystals are used—crystal clocks are 12 
subject to jitter, noise, drift, and frequency mismatch. This randomness may be as little as the placement of 13 
the clock waveform edges. Even if one entity were to attempt to synchronize itself to another entity’s clock, 14 
the correlation cannot be perfect, due to noise and uncertainties of the synchronization. 15 

Two clock circuits in the same piece of equipment may synchronize in frequency, but again the correlation 16 
will not be perfect due to the noise and jitter of the circuits. 17 

The randomness between the two clocks may not be much per sample—a tenth of a bit or less—but enough 18 
samples may be collected to gather enough randomness to form a seed. 19 

A device can use software methods to take advantage of this lack of synchronization, to collect randomness 20 
from different sources. As an example, an AP might measure the packet arrival times on a Ethernet  wireless 21 
ports. There is always some amount of traffic on modern Ethernets: ARPs, DHCP requests, NetBIOS 22 
advertisements, etc. The following example algorithm takes this traffic. In the example, an AP obtains 23 
randomness from the available traffic; if Ethernet traffic is available, the AP measures that for randomness; 24 
otherwise it waits for the first association and creates traffic that it can obtain randomness from. 25 

The clocks used to time the packets should be the highest resolution available, preferable 1ms resolution or 26 
better. The clock used to time packet arrival should not be related to the clock used for packet serialization. 27 
 28 

Initialize result to empty array 29 
LoopCounter = 0 30 
Wait until Ethernet traffic or association 31 
Repeat until global key counter "random enough" or 32 times { 32 

result = PRF-256(0, "Init Counter",  33 
Local Mac Address || Time || result || LoopCounter) 34 

LoopCounter++ 35 
Repeat 32 times { 36 

If Ethernet traffic available then 37 
Take lowest byte of time when Ethernet packet is seen 38 
Concatenate the seen time onto result 39 

else 40 
Start 4-way handshake, aborting after message 2 41 
Take lowest byte of time of when message 1 is sent 42 
Take lowest byte of time of when message 2 is 43 

received 44 
Take lowest byte of RSSI from message 2 45 
Take SNonce from message 2 46 
Concatenate the sent time; receive time, RSSI and 47 

SNonce onto result 48 
} 49 

} 50 
Global key counter = result = PRF-256(0, "Init Counter",  51 

Local Mac Address || Time || result || LoopCounter) 52 
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 1 

Note: The Time may be 0 if it is not available. 2 

F.9.2 Hardware Assisted Solution 3 

This example implementation uses hardware ring oscillators to generate randomness, as depicted in below. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

Figure 55—Randomness generating circuit 18 

The above circuit generates randomness. The clock input should be about the same frequency as the ring 19 
oscillator’s natural frequencies. The LFSR should be chosen to be one that is maximal length. Example 20 
LFSRs can be found at http://www-2.cs.cmu.edu/~koopman/lfsr/. 21 

The three ring oscillators should be isolated from each other as much as possible, to avoid harmonic locking 22 
between them. In addition, the three ring oscillators should not be near any other clock circuitry within the 23 
system, to avoid these ring oscillators locking to system clocks. 24 

The output of the LFSR is read by software and concatenated until enough randomness is collected. As a 25 
rule of thumb, reading from the LFSR eight to sixteen times the number of bits as the desired number of 26 
random bits is sufficient. 27 

 28 
Initialize result to empty array 29 
Repeat 1024 times { 30 

Read LFSR 31 
result = result | LFSR 32 
Wait a time period 33 

} 34 
Global key counter = PRF-256(0, "Init Counter", result) 35 

ring oscillators 

19 total 

29 total 

23 total 

Other sources of 
randomness, if available 

Clock 
8, 16, or 32 bit LFSRs 

8, 16, or 
32 bits 
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F.10. Additional test vectors 1 

F.10.1 Notation 2 

In the examples here, frames are represented as a stream of octets, each octet in hex notation, sometimes 3 
with text annotation.  The order of transmission for octets is left to right, top to bottom.  For example, 4 
consider the following representation of a frame: 5 
 6 

Description #1 00 01 02 03 
 04 05  
Description #2 06 07 08 

The frame consists of nine octets, represented in hex notation as “00”, “01”, ..., “08”.  The octet represented 7 
by “00” is transmitted first, and the octet represented by “08” is transmitted last.  Similar tables are used for 8 
other purposes, such as describing a cryptographic operation. 9 

In the text discussion outside of tables, integer values are represented in either hex notation using an “0x” 10 
prefix or in decimal notation using no prefix.  For example, the hex notation 0x12345 and the decimal 11 
notation 74565 represent the same integer value. 12 

F.10.2 WEP Encapsulation 13 

The discussion here represents an RC4 encryption using a table that shows the key, plaintext input, and 14 
ciphertext output.  For reference, here is a table that describes test vector “Commerce” of  <draft-kaukonen-15 
cipher-arcfour-03.txt>, a work-in-progress. 16 
 17 

Key 61 8a 63 d2 fb 
Plaintext dc ee 4c f9 2c 
Ciphertext f1 38 29 c9 de 

The MPDU data, prior to WEP encapsulation, is as follows: 18 
 19 

MPDU data aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 22 
0a ff ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00 
20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 43 41 43 
41 43 41 43 41 43 41 41 41 00 00 20 00 01 

RC4 encryption is performed as follows: 20 
 21 

Key fb 02 9e 30 31 32 33 34 
Plaintext aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 

22 0a ff ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 
00 00 20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 
43 41 43 41 43 41 43 41 43 41 41 41 00 00 20 00 01 1b d0 b6 04 

Ciphertext f6 9c 58 06 bd 6c e8 46 26 bc be fb 94 74 65 0a ad 1f 79 09 b0 f6 4d 
5f 58 a5 03 a2 58 b7 ed 22 eb 0e a6 49 30 d3 a0 56 a5 57 42 fc ce 14 
1d 48 5f 8a a8 36 de a1 8d f4 2c 53 80 80 5a d0 c6 1a 5d 6f 58 f4 10 
40 b2 4b 7d 1a 69 38 56 ed 0d 43 98 e7 ae e3 bf 0e 2a 2c a8 f7 

The plaintext consists of the MPDU data, followed by a 4-octet CRC-32 calculated over the MPDU data. 22 

The expanded MPDU, after WEP encapsulation, is as follows: 23 
 24 
IV fb 02 9e 80  
MPDU 
data 

f6 9c 58 06 bd 6c e8 46 26 bc be fb 94 74 65 0a ad 1f 79 09 b0 f6 4d 5f 58 a5 
03 a2 58 b7 ed 22 eb 0e a6 49 30 d3 a0 56 a5 57 42 fc ce 14 1d 48 5f 8a a8 36 
de a1 8d f4 2c 53 80 80 5a d0 c6 1a 5d 6f 58 f4 10 40 b2 4b 7d 1a 69 38 56 ed 
0d 43 98 e7 ae e3 bf 0e 

ICV 2a 2c a8 f7 

The IV consists of the first three octets of the RC4 key, followed by an octet containing the KeyID value in 25 
the upper two bits.  In this example, the KeyID value is 2.  The MPDU data consists of the ciphertext, 26 
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excluding the last four octets.  The ICV consists of the last four octets of the ciphertext, which is the 1 
encrypted CRC-32 value.   2 

F.10.3 TKIP encapsulation 3 

The discussion here represents a Michael calculation using a table that shows the key, input data, and MIC 4 
output.  For reference, here is a table that describes a the test vector for input string “Michael” shown in 5 
Annex F: 6 

Key d5 5e 10 05 10 12 89 86 
Input data 4d 69 63 68 61 65 6c 
MIC 0a 94 2b 12 4e ca a5 46 

The discussion represents calculation of phase 2 of the temporal key mixing function using a table that 7 
shows the TTAK key, the IV input, and the RC4-key output.  For reference, here is a table that describes 8 
test vector #4 shown in Annex F: 9 
 10 

TTAK a2 db 10 2a 3e a3 56 82 99 56 c4 5d 7b 11 fc 54 
IV 55 c6 
RC4 key 55 75 c6 a5 04 2b 11 29 25 1e 22 f4 5a 25 c7 d6 

The MSDU data, prior to TKIP encapsulation, is as follows: 11 
 12 
MSDU 
data 

aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 22 0a ff 
ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00 20 45 43 45 
4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 43 41 43 41 43 41 43 41 43 
41 41 41 00 00 20 00 01 

The MIC is computed using Michael, as follows: 13 
 14 
Key d5 5e 10 05 10 12 89 86 
Input data aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 22 

0a ff ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00 
20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 43 41 43 
41 43 41 43 41 43 41 41 41 00 00 20 00 01  

MIC 31 2d 0f fb 8c d6 58 30 

The input to the MIC calculation is the MSDU data. 15 

The MSDU and MIC are concatenated, and if necessary, the concatenated result is fragmented into several 16 
MPDUs.  In this example, it is fragmented into two MPDUs, as follows: 17 
 18 
MPDU #1 data aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 

22 0a ff ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 
00 

 19 
MPDU #2 data 00 20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 43 

41 43 41 43 41 43 41 43 41 41 41 00 00 20 00 01 31 2d 0f fb 8c d6 58 
30 

To encrypt the first MPDU, the RC4 key is derived using phase 2 of the temporal key mixing function, as 20 
follows: 21 

TTAK a2 db 10 2a 3e a3 56 82 99 56 c4 5d 7b 11 fc 54 
IV 5b a0 
RC4 key 5b 7b a0 d7 9a ee c2 2e 0d d1 a9 14 bd b8 42 30 

In this example, the IV has value 23456, or 0x5ba0.   22 

RC4 encryption of the first MPDU is performed as follows: 23 
 24 
Key 5b 7b a0 d7 9a ee c2 2e 0d d1 a9 14 bd b8 42 30 
Plaintext aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 

22 0a ff ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 
00 99 22 5f 4e 
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Ciphertext e0 3f 0e 76 ce dd d5 54 cb 7d af 74 41 8f 9f db 86 ed 6a 46 f1 1c e0 
6a 64 53 3e 95 76 43 3a 93 ac e5 5d 65 ac f0 8e ec 87 88 e7 a8 ad f6 
04 ee 4b 64 6e 

The plaintext consists of the MPDU data, followed by a 4-octet CRC-32 calculated over the MPDU data. 1 

The expanded first MPDU, after encapsulation, is as follows: 2 
 3 
IV 5b 7b a0 40  
MPDU #1 data e0 3f 0e 76 ce dd d5 54 cb 7d af 74 41 8f 9f db 86 ed 6a 46 f1 1c e0 

6a 64 53 3e 95 76 43 3a 93 ac e5 5d 65 ac f0 8e ec 87 88 e7 a8 ad f6 
04  

ICV ee 4b 64 6e 

The IV field consists of the first three octets of the RC4 key, followed by an octet containing the KeyID 4 
field in the upper two bits.  In this example, the KeyID has value 1.  The MPDU data consists of the 5 
ciphertext, excluding the last four octets.  The ICV consists of the last four octets of the ciphertext, which is 6 
the encrypted CRC-32 value. 7 

To encrypt the second MPDU, the RC4 key is derived using phase 2 of the temporal key mixing function, as 8 
follows: 9 
 10 

TTAK a2 db 10 2a 3e a3 56 82 99 56 c4 5d 7b 11 fc 54 
IV 5b a1 
RC4 key 5b 7b a1 2c 67 9b cb 70 e7 c3 d6 5e 14 d5 2a c7 

The IV for the second MPDU is the value of the IV for the first MPDU, plus one.   11 

RC4 encryption of the second MPDU is performed in the same manner as for the first MPDU, as follows: 12 
 13 
Key 5b 7b a1 2c 67 9b cb 70 e7 c3 d6 5e 14 d5 2a c7 
Plaintext 00 20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 43 41 

43 41 43 41 43 41 43 41 41 41 00 00 20 00 01 31 2d 0f fb 8c d6 58 30 b6 
d3 a7 06 

Ciphertext 9f 26 25 79 b8 bf 49 9e 27 bc a6 a9 2c 4d 21 95 4b 3b 84 45 c0 77 33 11 
f1 78 ff 14 57 83 15 3c a0 93 31 81 ac 2d bb 1c 81 cc 0e 0b e3 60 06 04 
98 9c dc 

The expanded second MPDU, after encapsulation, is similar to that of the first MPDU, as follows: 14 
 15 
IV 5b 7b a1 40  
MPDU #2 data 9f 26 25 79 b8 bf 49 9e 27 bc a6 a9 2c 4d 21 95 4b 3b 84 45 c0 77 33 

11 f1 78 ff 14 57 83 15 3c a0 93 31 81 ac 2d bb 1c 81 cc 0e 0b e3 60 
06  

ICV 04 98 9c dc 

F.10.4 AES-CCMP 16 

F.10.4.1 AES-CCMP Encapsulation Example 17 

The MPDU parameters and data, prior to AES-CCM encapsulation, is as follows: 18 
 19 
    Type     = 2   SubType  = 11 20 
    ToDS     = 1   FromDS   = 1 21 
    MoreFrag = 1   Retry    = 1 22 
    PwrMgt   = 1   moreData = 1 23 
    WEP      = 1 24 
    Order    = 1 25 
    Duration = 200 26 
    A1 = a1:a1:a1:a1:a1:a1 27 
    A2 = a2:a2:a2:a2:a2:a2 28 
    A3 = a3:a3:a3:a3:a3:a3 29 
    seqNum = 4000  fraqNum = 1 30 
    A4 = a4:a4:a4:a4:a4:a4 31 
    QC = 0xff77 32 
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    QoS-TID  = 7  QoS-FEC = 1 1 
    QoS-AckP = 3  QoS-TXOP/QL = 0xff 2 
    Algorithm = AES_CCM 3 
    KeyId = 1 4 
    PN    = 0x000000000001  (decimal = 1 ) 5 
    Data  = 6 
        69 6e 6f 76 61 74 69 6f  6e 73 20 69 6e 20 77 69 7 
        72 65 6c 65 73 73 8 

    The calculation of the encrypted MPDU is as follows: 9 
CCM additional  
auth data  
(muted header) 

b8 c7 a1 a1 a1 a1 a1 a1  a2 a2 a2 a2 a2 a2 a3 a3 
a3 a3 a3 a3 01 fa a4 a4  a4 a4 a4 a4 07 00 

CCM Nonce Value 07 a2 a2 a2 a2 a2 a2 00  00 00 00 00 01 
Encryption Header 
Note PN is  
big-endian!! 

00 00 00 60 00 00 00 01 

CBC Input Blocks 59 07 a2 a2 a2 a2 a2 a2  00 00 00 00 00 01 00 16 
00 1e b8 c7 a1 a1 a1 a1  a1 a1 a2 a2 a2 a2 a2 a2 
a3 a3 a3 a3 a3 a3 01 fa  a4 a4 a4 a4 a4 a4 07 00 
69 6e 6f 76 61 74 69 6f  6e 73 20 69 6e 20 77 69 
 72 65 6c 65 73 73 00 00  00 00 00 00 00 00 00 00 

CBC MIC Value a6 de 98 74 73 da 55 34  5b f0 26 e6 f0 b8 d9 27 
CTR Mode  
Preload (0) 

01 07 a2 a2 a2 a2 a2 a2  00 00 00 00 00 01 00 00 

CCM Final MIC Value 7d 63 5f d0 d8 3f 8b 6c 
CTR Mode Data to Encrypt 69 6e 6f 76 61 74 69 6f  6e 73 20 69 6e 20 77 69 

72 65 6c 65 73 73 
CTR Mode  
Encrypted Data 

6b 64 99 64 53 85 64 f1  28 69 08 ab fb 12 41 ed 
10 04 d4 44 da 3f 

CCM Encrypted MPDU with 
FCS 

b8 ff c8 00 a1 a1 a1 a1  a1 a1 a2 a2 a2 a2 a2 a2 
a3 a3 a3 a3 a3 a3 01 fa  a4 a4 a4 a4 a4 a4 77 ff 
00 00 00 60 00 00 00 01  6b 64 99 64 53 85 64 f1 
28 69 08 ab fb 12 41 ed  10 04 d4 44 da 3f 7d 63 
5f d0 d8 3f 8b 6c d5 67  81 13 

 10 

F.10.4.2 Additional CCMP Vest Vectors 11 

The following CCMP test vectors are full 802.11 CCMP encrypted MPDUs.  The MPDUs and CCMP 12 
processing can be tested by using the supplied key to decrypt the MPDU and checking the MIC value.   13 
 14 

Description  ccm#0001 : Data Packet, no A4 and no QC 
Key C0 c1 c2 c3 c4 c5 c6 c7  c8 c9 ca cb cc cd ce cf 
CCMP Encrypted 
MPDU with FCS 

08 41 02 01 00 06 25 a7  c4 36 00 02 2d 49 97 b4 
00 06 25 a7 c4 36 e0 00  06 05 00 a0 04 03 02 01 
1e e5 2d 13 b1 be 3f 20  42 5b 3f de dd d4 55 2b 
98 71 d8 7b 65 8c fd 57  f7 96 ad 71 87 

 15 
Description  ccm#0002 : Data Packet, no A4 and no QC, retry 
Key c0 c1 c2 c3 c4 c5 c6 c7  c8 c9 ca cb cc cd ce cf 
CCMP Encrypted 
MPDU with FCS 

08 49 02 01 00 06 25 a7  c4 36 00 02 2d 49 97 b4 
00 06 25 a7 c4 36 e0 00  06 05 00 e0 04 03 02 01 
1e e5 2d 13 b1 be 3f 20  42 5b 3f de dd d4 55 2b 
98 71 d8 7b 65 8c fd 57  f7 67 c5 18 73 

 16 
Description  ccm#0003 : Data Packet,A4 with no QC 
Key c0 c1 c2 c3 c4 c5 c6 c7  c8 c9 ca cb cc cd ce cf 
CCMP Encrypted 
MPDU with FCS 

08 43 02 01 00 06 25 a7  c4 36 00 02 2d 49 97 b4 
00 06 25 a7 c4 36 e0 00  41 42 43 44 45 46 00 00 
00 20 00 00 00 01 3b e9  b2 46 c6 fc 7a 51 55 1e 
14 c6 a8 85 28 bc 06 56  67 c8 ef 30 b3 12 69 14 
6c 3b c3 

 17 
Description  ccm#0004 : Data Packet,A4 and QC 
Key c0 c1 c2 c3 c4 c5 c6 c7  c8 c9 ca cb cc cd ce cf 
CCMP Encrypted 
MPDU with FCS 

88 43 02 01 00 06 25 a7  c4 36 00 02 2d 49 97 b4 
00 06 25 a7 c4 36 e0 00  41 42 43 44 45 46 04 00 
00 00 00 20 00 00 00 01  46 72 f2 9e 41 54 e9 11 
58 47 c2 a9 ae dc 10 0c  e8 82 53 bd a2 04 ae 1d 
33 05 af 02 1e 

COPYRIGHT 2003; Institute of Electrical and Electronics Engineers, Inc 
 

Document provided by IHS Licensee=Federal Aviation Admin/9999507100, User=, 
10/02/2003 07:50:03 MDT Questions or comments about this message: please call
the Document Policy Group at 1-800-451-1584.

--`,`,,,,``,,``,`,````,,,,,`,`,-`-`,,`,,`,`,,`---



  IEEE 
Wireless LAN Enhanced Security  P802.11i/D3.0, November 2002 

Copyright © 2002 IEEE. All rights reserved. 
 This is an unapproved IEEE Standards Draft, subject to change.  195

 1 
Description  ccm#0005 : Data Packet,QC no A4 
Key c0 c1 c2 c3 c4 c5 c6 c7  c8 c9 ca cb cc cd ce cf 
CCMP Encrypted 
MPDU with FCS 

88 41 02 01 00 06 25 a7  c4 36 00 02 2d 49 97 b4 
00 06 25 a7 c4 36 e0 00  04 00 00 00 00 20 00 00 
00 01 46 72 f2 9e 41 54  e9 11 58 47 c2 a9 ae dc 
10 0c e8 dc 91 98 bf 6a  52 c8 03 67 12 0b 83 

 2 
 3 

Description  ccm#0006 : Data Packet, no A4, No QC, look out for the C9 
Key 00 01 02 03 04 05 06 07  08 c9 0a 0b 0c 0d 0e 0f 
CCMP Encrypted 
MPDU with FCS 

08 41 02 01 00 06 25 a7  c4 36 00 02 2d 49 97 b4 
00 06 25 a7 c4 36 e0 00  06 05 00 a0 04 03 02 01 
de bf 2c c9 94 e6 5a 70  2c ee e3 19 84 21 39 c3 
f2 9a 2e 12 63 11 74 5f  3c 20 3d fd 4e 

 4 
 5 

Description  ccm#0007 : Data Packet, same as 144r4 data, odd a4 alignment 
Key 00 01 02 03 04 05 06 07  08 09 0a 0b 0c 0d 0e 0f 
CCMP Encrypted 
MPDU with FCS 

08 43 12 34 ff ff ff ff  ff ff 00 40 96 45 07 f1 
08 00 46 17 62 3e 50 67  aa aa 03 00 00 00 00 05 
00 a0 04 03 02 01 22 3b  8c 39 95 b0 d0 c5 81 d7 
19 2f e4 4a ad 02 76 61  30 fe 1a 2c 1d 54 0b e2 
ce 2f 4d 53 03 1b 62 68  8f 9d 75 81 08 ff 6d 35 
e5 a0 75 f4 c2 0a 95 d2  f2 c7 45 94 b6 9e 64 63 
3a fa 6e 5c 97 57 ea 49  24 66 f4 e5 3e e9 81 77 
d2 0b f9 d9 82 15 ac ce  8f e8 7b 7e f1 ef ae cc 
9b ac 

 6 
Description  ccm#0008 : All flag bits set with QC 
Key 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 
CCMP Encrypted 
MPDU with FCS 

b8 ff c8 00 a1 a1 a1 a1  a1 a1 a2 a2 a2 a2 a2 a2 
a3 a3 a3 a3 a3 a3 01 fa  a4 a4 a4 a4 a4 a4 77 ff 
00 00 00 60 00 00 00 01  6b 64 99 64 53 85 64 f1 
28 69 08 ab fb 12 41 ed  10 04 d4 44 da 3f 7d 63 
5f d0 d8 3f 8b 6c d5 67  81 13 

 7 

F.10.5 AES-OCB encapsulation 8 

The discussion here represents an AES-OCB encryption using a table that shows the key, nonce input, 9 
plaintext input, ciphertext output, and tag output.  For reference, here is a table that describes test case 10 
“OCB-AES-128-34B” available at http://www.cs.ucdavis.edu/~rogaway/ocb/. 11 
 12 
Key 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 
Nonce 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01  
Plaintext 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 

18 19 1a 1b 1c 1d 1e 1f 20 21 
Ciphertext 01 a0 75 f0 d8 15 b1 a4 e9 c8 81 a1 bc ff c3 eb d4 90 3d d0 02 5b a4 aa 

83 7c 74 f1 21 b0 26 0f a9 5d 
Tag cf 83 41 bb 10 82 0c cf 14 bd ec 56 b8 d7 d6 ab 

The MSDU data, prior to AES-OCB encapsulation, is as follows: 13 
 14 
MSDU data aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 22 0a 

ff ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00 20 45 
43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 43 41 43 41 43 41 
43 41 43 41 41 41 00 00 20 00 01 

In this example, the following parameters will be used: 15 

• Replay counter value is 123456789 = 0x75bcd15. 16 

• QOS traffic class is 4. 17 

• KeyID is 2. 18 

• Source MAC address is 0x123456789abc 19 
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• Destination MAC address is 0x23456789abcd 1 

AES-OCB encryption is performed as follows: 2 
 3 
Key 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 
Nonce 75 bc d1 54 12 34 56 78 9a bc 23 45 67 89 ab cd 
Plaintext aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00 80 11 be 64 0a 00 01 22 

0a ff ff ff 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00 
20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45 46 46 43 43 41 43 
41 43 41 43 41 43 41 41 41 00 00 20 00 01 

Ciphertext 3f 42 a7 b6 8c 4d ea 07 e1 2b 2d c6 82 e4 72 81 70 45 a3 02 21 ee b6 bf 
0a f0 26 a6 8d 73 e6 f3 55 dc 15 60 8e 7e 92 52 0b 4e 11 73 a3 a5 ce 7c 
39 93 65 70 a1 16 40 79 02 a1 85 17 f6 5e 9d eb 35 bf 2c 18 49 6c 2c 2b 
33 8b d4 0f d5 4e 1c 50 eb fd fa 56 95 56 

Tag 06 9e e2 41 c6 1e 60 2d b3 05 76 53 03 a5 5f 5e 

The first three octets of the nonce are the upper 24 bits of the replay counter value.  The upper nibble of the 4 
fourth octet of the nonce consists of the least significant 4 bits of the replay counter value.  The lower nibble 5 
of the fourth octet of the nonce is the QOS traffic class.  Octets five through ten of the nonce are the source 6 
MAC address.  Octets eleven through sixteen of the nonce are the destination MAC address.  The plaintext 7 
consists of the MSDU data. 8 

The expanded MSDU, after AES-OCB encapsulation, is as follows: 9 
 10 
Replay  75 bc d1 85 
MSDU data 3f 42 a7 b6 8c 4d ea 07 e1 2b 2d c6 82 e4 72 81 70 45 a3 02 21 ee b6 bf 

0a f0 26 a6 8d 73 e6 f3 55 dc 15 60 8e 7e 92 52 0b 4e 11 73 a3 a5 ce 7c 
39 93 65 70 a1 16 40 79 02 a1 85 17 f6 5e 9d eb 35 bf 2c 18 49 6c 2c 2b 
33 8b d4 0f d5 4e 1c 50 eb fd fa 56 95 56 

MIC 06 9e e2 41 c6 1e 60 2d 

The first three octets of the replay field are the upper 24 bits of the replay counter value.  The fourth octet of 11 
the replay field is the concatenation of:  the 2-bit keyID value; two 0-bits; and the least significant 4 bits of 12 
the replay counter value.  The MSDU data consists of the ciphertext. The MIC is the first eight octets of the 13 
tag value. 14 

F.10.5 The PRF Function - PRF(key, prefix, data, length). 15 

A set of test vectors are provided for each size of PRF function used in this specification.  The input to the 16 
PRF function are strings for ‘key’, ‘prefix’ and ‘data’.  The length can be any multiple of 8, but the values: 17 
192, 256, 384, 512 and 768 are used in this specification. The test vectors were taken from RFC2202 with 18 
additional vectors added to test larger key and data sizes. 19 
 20 
Test_case  1 
key 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 
prefix "prefix" 
data "Hi There" 
length 192 
PRF-192 bc d4 c6 50 b3 0b 96 84  95 18 29 e0 d7 5f 9d 54 

b8 62 17 5e d9 f0 06 06 

 21 
Test_case  2 
key 'Jefe' 
prefix "prefix-2" 
data "what do ya want for nothing?" 
length 256 
PRF-256 47 c4 90 8e 30 c9 47 52  1a d2 0b e9 05 34 50 ec 

be a2 3d 3a a6 04 b7 73  26 d8 b3 82 5f f7 47 5c 

 22 
Test_case  3 
key aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa 

aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa 
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aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa 
aa aa aa aa aa aa aa aa 

prefix "prefix-3" 
data "Test Using Larger Than Block-Size Key - Hash Key First" 
length 384 
PRF-384 0a b6 c3 3c cf 70 d0 d7  36 f4 b0 4c 8a 73 73 25 

55 11 ab c5 07 37 13 16  3b d0 b8 c9 ee b7 e1 95 
6f a0 66 82 0a 73 dd ee  3f 6d 3b d4 07 e0 68 2a 

 1 
Test_case  4 
key 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 
prefix "prefix-4" 
data "Hi There Again" 
length 512 
PRF-512 24 8c fb c5 32 ab 38 ff  a4 83 c8 a2 e4 0b f1 70 

eb 54 2a 2e 09 16 d7 bf  6d 97 da 2c 4c 5c a8 77 
73 6c 53 a6 5b 03 fa 4b  37 45 ce 76 13 f6 ad 68 
e0 e4 a7 98 b7 cf 69 1c  96 17 6f d6 34 a5 9a 49 

 2 
Test
_cas
e  

5 

key aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa 
aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa 
aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa 

pref
ix 

"prefix-5" 

data "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data" 
leng
th 

768 

PRF-
768 

67 27 a3 e8 d5 2c f2 70  08 ce 4d 68 3e 45 99 25 
c6 23 5b e0 0c 8c 13 03  77 26 af fc bc 02 29 17 
a5 94 1c 0c 77 4b 00 25  7f 77 c6 e2 4c 81 02 87 
8e 04 b7 2c f6 c7 88 a7  ba ec 4f 69 68 7b eb d6 
30 15 59 ca 1f c2 6f 93  04 2e 1e 82 ba 28 9a 05 
2c a8 51 ef cd 4e 15 a1  5d d0 4c bb e1 f6 94 58 

F.10 Key hierarchy test vectors 3 

The following test vectors provide an example of both pairwise and group key derivation for CCMP, TKIP 4 
and WRAP. 5 

F.10.1 Pairwise Key Derivation 6 

Pairwise keys are derived from the PMK, AA, SA, SNonce and ANonce.  The PMK in this example is 7 
taken from the phasephrase generation test vector with pkbkdf2("ThisIsAPassword", "ThisIsASSID" ,4096 8 
,256). The values below are used for as input to the pairwise key derivation test vectors. 9 

 10 
PMK 0d c0 d6 eb 90 55 5e d6  41 97 56 b9 a1 5e c3 e3 

20 9b 63 df 70 7d d5 08  d1 45 81 f8 98 27 21 af 
AA a0 a1 a1 a3 a4 a5 
SA b0 b1 b2 b3 b4 b5 
SNonce c0 c1 c2 c3 c4 c5 c6 c7  c8 c9 d0 d1 d2 d3 d4 d5 

d6 d7 d8 d9 
ANonce e0 e1 e2 e3 e4 e5 e6 e7  e8 e9 f0 f1 f2 f3 f4 f5 

f6 f7 f8 f9 

F.10.1.1 CCMP Pairwuse Key Derivation 11 

Using the values from section F.x.1 for PMK, AA, SA, SNonce and ANonce the key derivation process for 12 
CCMP generates: 13 
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 1 
TK1 8c b7 78 33 2e 94 ac a6  d3 0b 89 cb e8 2a 9c a9 

F.10.1.2 TKIP Pairwise Key Derivation 2 

Using the values from section F.x.1 for PMK, AA, SA, SNonce and ANonce the key derivation process for 3 
TKIP generates: 4 

 5 
MK aa 7c fc 85 60 25 1e 4b  c6 87 e0 cb 8d 29 83 63 
EK ba 53 16 3d f3 2a 86 38  f4 79 ab e3 4b fd 2b c8 
TK1 8c b7 78 33 2e 94 ac a6  d3 0b 89 cb e8 2a 9c a9 
TK2 36 4a ff bb ce 87 5f 5d  f2 dd 58 41 c0 ed 2a 41 
small_to_large_MIC_key 36 4a ff bb ce 87 5f 5d 
large_to_small_MIC_key f2 dd 58 41 c0 ed 2a 41 

F.10.1.3 WRAP Pairwise Key Derivation 6 

Using the values from section F.x.1 for PMK, AA, SA, SNonce and ANonce the key derivation process for 7 
WRAP generates: 8 

 9 
TK1 8c b7 78 33 2e 94 ac a6  d3 0b 89 cb e8 2a 9c a9 

 10 
11 
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F.10.2 Group Key Derivation 1 

Group keys are derived from the values of GMK, AA and GNonce.  The test vectors in the following 2 
sections use these values to generate the associated group keys for CCMP, TKIP and WRAP. 3 

 4 
GMK 01 23 58 13 21 34 55 89  14 42 33 37 76 10 98 71 

59 72 58 44 18 16 76 51  09 46 17 71 12 86 57 46 
AA a0 a1 a1 a3 a4 a5 
GNonce 00 01 02 03 04 05 06 07  08 09 0a 0b 0c 0d 0e 0f 

10 11 12 13 

 5 

F.10.2.1 CCMP Group Key Derivation 6 

Using the values from section F.x.2 for GMK, AA, and GNonce the key derivation process for CCMP 7 
generates: 8 

 9 
TK1 02 36 05 a1 ae 5b e4 d1  ba b4 7e 40 2f a4 da 5e 

F.10.2.2 TKIP Group Key Derivation 10 

Using the values from section F.x.2 for GMK, AA, and GNonce the key derivation process for TKIP 11 
generates: 12 

 13 
TK1 02 36 05 a1 ae 5b e4 d1  ba b4 7e 40 2f a4 da 5e 
TK2 65 73 96 c6 c6 de bc 5f  67 fc 80 bf 9a be ce 25 
small_to_large_MIC_key 65 73 96 c6 c6 de bc 5f 
large_to_small_MIC_key 67 fc 80 bf 9a be ce 25 

F.10.2.3 WRAP Group Key Derivation 14 

Using the values from section F.x.2 for GMK, AA, and GNonce the key derivation process for WRAP 15 
generates: 16 

 17 
TK1 02 36 05 a1 ae 5b e4 d1  ba b4 7e 40 2f a4 da 5e 

 18 
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